inferencer.py 3.8 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib

H
Helin Wang 已提交
17
import core
D
daminglu 已提交
18

J
Jeff Wang 已提交
19
import executor
D
daminglu 已提交
20
import framework
J
Jeff Wang 已提交
21
import io
22
import parallel_executor
D
daminglu 已提交
23
import unique_name
Q
Qiao Longfei 已提交
24 25
from trainer import check_and_get_place

H
Helin Wang 已提交
26
__all__ = ['Inferencer', ]
H
Helin Wang 已提交
27 28 29


class Inferencer(object):
Q
qiaolongfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    """
    Inferencer High Level API.

    Args:
        infer_func (Python func): Infer function that will return predict Variable
        param_path (str): The path where the inference model is saved by fluid.io.save_params
        place (Place): place to do the inference
        parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.

    Examples:
        .. code-block:: python

            def inference_program():
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                return y_predict

            place = fluid.CPUPlace()
            inferencer = fluid.Inferencer(
                infer_func=inference_program, param_path="/tmp/model", place=place)

    """

53
    def __init__(self, infer_func, param_path, place=None, parallel=False):
Q
Qiao Longfei 已提交
54
        self.param_path = param_path
H
Helin Wang 已提交
55
        self.scope = core.Scope()
56 57
        self.parallel = parallel
        self.place = check_and_get_place(place)
J
Jeff Wang 已提交
58

D
daminglu 已提交
59 60 61 62 63
        self.inference_program = framework.Program()
        with framework.program_guard(self.inference_program):
            with unique_name.guard():
                self.predict_var = infer_func()

64 65 66 67
        with self._prog_and_scope_guard():
            # load params from param_path into scope
            io.load_params(executor.Executor(self.place), param_path)

68
        if parallel:
69 70 71 72
            with self._prog_and_scope_guard():
                self.exe = parallel_executor.ParallelExecutor(
                    use_cuda=isinstance(self.place, core.CUDAPlace),
                    loss_name=self.predict_var.name)
73 74
        else:
            self.exe = executor.Executor(self.place)
Q
Qiao Longfei 已提交
75

76 77
        self.inference_program = self.inference_program.clone(for_test=True)

D
daminglu 已提交
78
    def infer(self, inputs, return_numpy=True):
Q
Qiao Longfei 已提交
79
        """
Q
qiaolongfei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
        Do Inference for Inputs

        Args:
            inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
            return_numpy (bool): transform return value into numpy or not

        Returns:
            Tensor or Numpy: the predict value of the inference model for the inputs

        Examples:
            .. code-block:: python

                tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
                results = inferencer.infer({'x': tensor_x})
Q
Qiao Longfei 已提交
94 95 96 97 98
        """
        if not isinstance(inputs, dict):
            raise ValueError(
                "inputs should be a map of {'input_name': input_var}")

D
daminglu 已提交
99 100 101 102 103
        with executor.scope_guard(self.scope):
            results = self.exe.run(self.inference_program,
                                   feed=inputs,
                                   fetch_list=[self.predict_var],
                                   return_numpy=return_numpy)
Q
Qiao Longfei 已提交
104 105

        return results
106 107 108 109 110 111

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(main_program=self.inference_program):
            with executor.scope_guard(self.scope):
                yield