layer.cc 22.2 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18
#include "paddle/fluid/framework/convert_utils.h"
19
#include "paddle/fluid/framework/op_registry.h"
20 21
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/imperative/prepared_operator.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/imperative/var_helper.h"
M
minqiyang 已提交
24
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
26
#include "paddle/fluid/platform/profiler.h"
27
#include "paddle/phi/kernels/funcs/math_function.h"
28 29 30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
33 34 35
namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
36
using framework::Variable;
Z
Zeng Jinle 已提交
37 38 39 40 41 42 43 44
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
45 46 47
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
48 49 50 51 52 53 54 55 56 57 58 59
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
60 61 62 63 64 65 66 67 68
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
69 70
  }

J
Jiabin Yang 已提交
71 72 73 74 75
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
76
    }
J
Jiabin Yang 已提交
77 78 79 80
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

81
template <typename VarType>
J
Jiabin Yang 已提交
82 83
static std::string DebugString(
    const std::string& name,
84
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
85 86
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
87

J
Jiabin Yang 已提交
88 89
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
90

J
Jiabin Yang 已提交
91 92 93 94
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
J
Jiabin Yang 已提交
95
    ss << GetNameFromVar(vars[i]) << "[";
96
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
97 98 99 100 101 102
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
103 104 105
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
J
Jiabin Yang 已提交
106 107 108 109 110 111
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
112
    } else if (var.IsType<phi::SelectedRows>()) {
113
      ss << "SelectedRows<";
114
      auto& selected_rows = var.Get<phi::SelectedRows>();
115 116 117
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
118 119 120
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
121 122 123 124 125 126 127 128 129
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
130 131 132 133
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
134
  }
135

J
Jiabin Yang 已提交
136 137
  ss << "}";
  return ss.str();
138 139
}

140 141 142 143
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
144 145 146 147 148 149 150 151
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
152
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
153
    ++i;
154 155
  }

J
Jiabin Yang 已提交
156 157 158 159
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
160
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
161 162 163 164
    ++i;
  }
  return ss.str();
}
165

166 167 168 169 170 171 172 173 174 175
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
176
}
177

J
Jiabin Yang 已提交
178
std::string LayerDebugString(const std::string& op_type,
179 180 181
                             const NameVarMap<egr::EagerVariable>& ins,
                             const NameVarMap<egr::EagerVariable>& outs) {
  return LayerDebugStringImpl<egr::EagerVariable>(op_type, ins, outs);
J
Jiabin Yang 已提交
182 183 184 185 186 187
}

template <typename VarType>
static void SetForwardDataTypeOfGradVars(const NameVarMap<VarType>& outs) {
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
188
      // NOTE(zhiqu): The output may be NULL because of pruning.
J
Jiabin Yang 已提交
189 190 191 192 193 194 195
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
}
template <>
196 197
void SetForwardDataTypeOfGradVars<egr::EagerVariable>(
    const NameVarMap<egr::EagerVariable>& outs) {
J
Jiabin Yang 已提交
198 199 200
  // In eager mode we don't need this.
}

201 202 203 204 205
void TestSetForwardDataTypeOfGradVarsEager(
    const NameVarMap<egr::EagerVariable>& outs) {
  SetForwardDataTypeOfGradVars<egr::EagerVariable>(outs);
}

206
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
207
    : var_(var), grad_node_(var->GetGradNode()) {
208 209
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
210 211 212 213 214 215 216 217 218 219 220 221
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

222
void VarBase::ClearGradient(bool set_to_zero) {
223
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
224
  if (grad_var_) {
225 226
    if (grad_var_->Var().IsType<phi::SelectedRows>()) {
      auto* grad_t = grad_var_->MutableVar()->GetMutable<phi::SelectedRows>();
227
      if (grad_t->mutable_value()->IsInitialized()) {
228
#ifdef PADDLE_WITH_MKLDNN
229
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
230
#endif
231 232 233 234
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
235 236
      platform::RecordEvent record_event(
          "ClearGradient", platform::TracerEventType::UserDefined, 2);
237 238
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
239
      if (grad_t->IsInitialized()) {
240 241 242
        if (set_to_zero) {
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
243
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
244 245 246
        } else {
          grad_t->clear();
        }
247
#ifdef PADDLE_WITH_MKLDNN
248
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
249
#endif
250
      }
251
    }
252 253 254 255
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
256
  }
J
Jiabin Yang 已提交
257
}
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void VarBase::_GradientSetEmpty(bool is_empty) {
  VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      share_var->SetIsEmpty(is_empty);
    }
  }
}

bool VarBase::_IsGradientSetEmpty() {
  bool res = true;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      res = share_var->is_empty_;
      VLOG(4) << "Check gradient " << Name() << " is empty:" << res;
    }
  }
  return res;
}

J
Jiabin Yang 已提交
281
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
282
                                             const bool blocking) const {
283
  PADDLE_ENFORCE_EQ(
284
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
285
                                Var().IsType<phi::SelectedRows>()),
286 287 288 289
      true,
      platform::errors::InvalidArgument(
          "Variable is not initialized or Variable's type is not "
          "LoDTensor or SelectedRows when getting numpy tensor"));
290

291 292
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
293 294
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
295
        true, Name() + std::to_string(copied_counter_++));
296

297 298
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
299
    dst_tensor->set_lod(src_tensor.lod());
300 301 302
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
303 304 305 306 307 308 309
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
310
    }
311 312
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
313 314
    return new_var;
  } else {
315
    auto& src_selected_rows = Var().Get<phi::SelectedRows>();
316 317 318 319
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
320
        new_var->MutableVar()->GetMutable<phi::SelectedRows>();
321 322 323 324 325 326 327 328 329 330 331 332

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
333 334
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
335 336
    return new_var;
  }
M
minqiyang 已提交
337 338
}

339
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
357 358
    SetDataType(src.DataType());
    SetType(src.Type());
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
384 385 386
  } else if (src.Var().IsType<phi::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<phi::SelectedRows>();
    auto* dst_selected_rows = MutableVar()->GetMutable<phi::SelectedRows>();
387 388 389 390 391 392 393 394 395 396 397 398 399 400
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
401
    }
402 403 404 405
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
406 407 408
  }
}

409 410 411 412 413 414 415 416 417
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
// NOTE(weilong wu):
// This function try to copy the data from target varbase,
// and fill into the grad_var_ of the current varbase.
void VarBase::_CopyGradientFrom(const VarBase& src) {
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          Name(), src.Name()));
  }
  VLOG(4) << " VarBase copy gradient with " << src.Name();
  if (grad_var_) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true,
                      platform::errors::InvalidArgument(
438
                          "Tensor %s has not been initialized", src.Name()));
439 440 441 442 443 444 445
    auto* grad_t = grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
    auto* var_ = MutableVar()->GetMutable<framework::LoDTensor>();
    grad_t->ShareDataWith(src_tensor);
    grad_t->Resize(var_->dims());
  }
}

446
void OpBase::SetType(const std::string& type) {
H
hong 已提交
447
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
448
}
449

450 451 452
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
453 454
}

455 456 457 458 459
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
460
                          const framework::AttributeMap& default_attrs,
461
                          const platform::Place& place) {
462
  auto* op_kernel = static_cast<const framework::OperatorWithKernel*>(&op);
463 464 465
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
466
  auto& info = op.Info();
J
Jiabin Yang 已提交
467
  if (info.infer_var_type_) {
468 469
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
470
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
471
  }
472

J
Jiabin Yang 已提交
473 474 475
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
476
      if (var) {
J
Jiabin Yang 已提交
477
        InitializeVariable(var->MutableVar(), GetType(var));
478
      }
479 480
    }
  }
X
Xin Pan 已提交
481

482
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
502 503
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs);
504 505 506
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
507
    prepared_op.Run(ins, outs, attrs, default_attrs);
508
  } else {
509
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
510
  }
511

512
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
513 514

  // set the output var
J
Jiabin Yang 已提交
515
  SetForwardDataTypeOfGradVars<VarType>(outs);
516 517
}

518 519 520 521
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
522
                 const framework::AttributeMap& default_attrs,
523
                 const platform::Place& place) {
524
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place);
525 526 527 528 529 530
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
531
                 const framework::AttributeMap& default_attrs,
532
                 const platform::Place& place) {
533
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place);
534 535
}

J
Jiabin Yang 已提交
536
void OpBase::Run(const framework::OperatorBase& op,
537 538
                 const NameVarMap<egr::EagerVariable>& ins,
                 const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
539 540 541
                 const framework::AttributeMap& attrs,
                 const framework::AttributeMap& default_attrs,
                 const platform::Place& place) {
542
  OpBaseRunImpl<egr::EagerVariable>(op, ins, outs, attrs, default_attrs, place);
J
Jiabin Yang 已提交
543 544
}

545
void ClearNoNeedBufferInputs(OpBase* op) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
576 577
      new_tensor->set_type(old_tensor.dtype());
      new_tensor->set_layout(old_tensor.layout());
578 579 580 581 582 583 584 585
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
586
    const framework::AttributeMap& default_attrs, const platform::Place& place,
587
    const std::map<std::string, std::string>& inplace_map) {
588 589 590 591 592
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

593 594
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
595
  if (grad_node && !grad_node->empty()) {
596 597 598 599
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
600 601 602 603 604 605 606
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

J
Jiabin Yang 已提交
607 608 609 610 611 612 613 614 615
std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameTensorMap& ins,
    const NameTensorMap& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
  // Do Nothing in Eager Mode.
  return nullptr;
}

616 617
}  // namespace imperative
}  // namespace paddle