layer.cc 22.2 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18 19
#include "paddle/fluid/framework/convert_utils.h"

20
#include "paddle/fluid/framework/op_registry.h"
21 22
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/imperative/prepared_operator.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/imperative/var_helper.h"
M
minqiyang 已提交
25
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
27
#include "paddle/fluid/platform/profiler.h"
28
#include "paddle/phi/kernels/funcs/math_function.h"
29 30 31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
34 35 36
namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
37
using framework::Variable;
Z
Zeng Jinle 已提交
38 39 40 41 42 43 44 45
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
46 47 48
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
49 50 51 52 53 54 55 56 57 58 59 60
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
61 62 63 64 65 66 67 68 69
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
70 71
  }

J
Jiabin Yang 已提交
72 73 74 75 76
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
77
    }
J
Jiabin Yang 已提交
78 79 80 81
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

82
template <typename VarType>
J
Jiabin Yang 已提交
83 84
static std::string DebugString(
    const std::string& name,
85
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
86 87
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
88

J
Jiabin Yang 已提交
89 90
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
91

J
Jiabin Yang 已提交
92 93 94 95
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
J
Jiabin Yang 已提交
96
    ss << GetNameFromVar(vars[i]) << "[";
97
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
98 99 100 101 102 103
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
104 105 106
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
J
Jiabin Yang 已提交
107 108 109 110 111 112
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
113
    } else if (var.IsType<phi::SelectedRows>()) {
114
      ss << "SelectedRows<";
115
      auto& selected_rows = var.Get<phi::SelectedRows>();
116 117 118
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
119 120 121
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
122 123 124 125 126 127 128 129 130
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
131 132 133 134
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
135
  }
136

J
Jiabin Yang 已提交
137 138
  ss << "}";
  return ss.str();
139 140
}

141 142 143 144
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
153
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
154
    ++i;
155 156
  }

J
Jiabin Yang 已提交
157 158 159 160
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
161
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
162 163 164 165
    ++i;
  }
  return ss.str();
}
166

167 168 169 170 171 172 173 174 175 176
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
177
}
178

J
Jiabin Yang 已提交
179
std::string LayerDebugString(const std::string& op_type,
180 181 182
                             const NameVarMap<egr::EagerVariable>& ins,
                             const NameVarMap<egr::EagerVariable>& outs) {
  return LayerDebugStringImpl<egr::EagerVariable>(op_type, ins, outs);
J
Jiabin Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
}

template <typename VarType>
static void SetForwardDataTypeOfGradVars(const NameVarMap<VarType>& outs) {
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
}
template <>
197 198
void SetForwardDataTypeOfGradVars<egr::EagerVariable>(
    const NameVarMap<egr::EagerVariable>& outs) {
J
Jiabin Yang 已提交
199 200 201
  // In eager mode we don't need this.
}

202 203 204 205 206
void TestSetForwardDataTypeOfGradVarsEager(
    const NameVarMap<egr::EagerVariable>& outs) {
  SetForwardDataTypeOfGradVars<egr::EagerVariable>(outs);
}

207
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
208
    : var_(var), grad_node_(var->GetGradNode()) {
209 210
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
211 212 213 214 215 216 217 218 219 220 221 222
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

223
void VarBase::ClearGradient(bool set_to_zero) {
224
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
225
  if (grad_var_) {
226 227
    if (grad_var_->Var().IsType<phi::SelectedRows>()) {
      auto* grad_t = grad_var_->MutableVar()->GetMutable<phi::SelectedRows>();
228
      if (grad_t->mutable_value()->IsInitialized()) {
229
#ifdef PADDLE_WITH_MKLDNN
230
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
231
#endif
232 233 234 235
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
236 237
      platform::RecordEvent record_event(
          "ClearGradient", platform::TracerEventType::UserDefined, 2);
238 239
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
240
      if (grad_t->IsInitialized()) {
241 242 243
        if (set_to_zero) {
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
244
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
245 246 247
        } else {
          grad_t->clear();
        }
248
#ifdef PADDLE_WITH_MKLDNN
249
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
250
#endif
251
      }
252
    }
253 254 255 256
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
257
  }
J
Jiabin Yang 已提交
258
}
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
void VarBase::_GradientSetEmpty(bool is_empty) {
  VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      share_var->SetIsEmpty(is_empty);
    }
  }
}

bool VarBase::_IsGradientSetEmpty() {
  bool res = true;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      res = share_var->is_empty_;
      VLOG(4) << "Check gradient " << Name() << " is empty:" << res;
    }
  }
  return res;
}

J
Jiabin Yang 已提交
282
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
283
                                             const bool blocking) const {
284
  PADDLE_ENFORCE_EQ(
285
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
286
                                Var().IsType<phi::SelectedRows>()),
287 288 289
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
290

291 292
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
293 294
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
295
        true, Name() + std::to_string(copied_counter_++));
296

297 298
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
299
    dst_tensor->set_lod(src_tensor.lod());
300 301 302
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
303 304 305 306 307 308 309
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
310
    }
311 312
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
313 314
    return new_var;
  } else {
315
    auto& src_selected_rows = Var().Get<phi::SelectedRows>();
316 317 318 319
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
320
        new_var->MutableVar()->GetMutable<phi::SelectedRows>();
321 322 323 324 325 326 327 328 329 330 331 332

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
333 334
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
335 336
    return new_var;
  }
M
minqiyang 已提交
337 338
}

339
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
357 358
    SetDataType(src.DataType());
    SetType(src.Type());
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
384 385 386
  } else if (src.Var().IsType<phi::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<phi::SelectedRows>();
    auto* dst_selected_rows = MutableVar()->GetMutable<phi::SelectedRows>();
387 388 389 390 391 392 393 394 395 396 397 398 399 400
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
401
    }
402 403 404 405
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
406 407 408
  }
}

409 410 411 412 413 414 415 416 417
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
// NOTE(weilong wu):
// This function try to copy the data from target varbase,
// and fill into the grad_var_ of the current varbase.
void VarBase::_CopyGradientFrom(const VarBase& src) {
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          Name(), src.Name()));
  }
  VLOG(4) << " VarBase copy gradient with " << src.Name();
  if (grad_var_) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true,
                      platform::errors::InvalidArgument(
438
                          "Tensor %s has not been initialized", src.Name()));
439 440 441 442 443 444 445
    auto* grad_t = grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
    auto* var_ = MutableVar()->GetMutable<framework::LoDTensor>();
    grad_t->ShareDataWith(src_tensor);
    grad_t->Resize(var_->dims());
  }
}

446
void OpBase::SetType(const std::string& type) {
H
hong 已提交
447
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
448
}
449

450 451 452
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
453 454
}

455 456 457 458 459
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
460
                          const framework::AttributeMap& default_attrs,
461
                          const platform::Place& place) {
462
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
463 464 465
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
466
  auto& info = op.Info();
J
Jiabin Yang 已提交
467
  if (info.infer_var_type_) {
468 469
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
470
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
471
  }
472

J
Jiabin Yang 已提交
473 474 475
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
476
      if (var) {
J
Jiabin Yang 已提交
477
        InitializeVariable(var->MutableVar(), GetType(var));
478
      }
479 480
    }
  }
X
Xin Pan 已提交
481

482
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
502 503
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs);
504 505 506
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
507
    prepared_op.Run(ins, outs, attrs, default_attrs);
508
  } else {
509
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
510
  }
511

512
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
513 514

  // set the output var
J
Jiabin Yang 已提交
515
  SetForwardDataTypeOfGradVars<VarType>(outs);
516 517
}

518 519 520 521
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
522
                 const framework::AttributeMap& default_attrs,
523
                 const platform::Place& place) {
524
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place);
525 526 527 528 529 530
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
531
                 const framework::AttributeMap& default_attrs,
532
                 const platform::Place& place) {
533
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place);
534 535
}

J
Jiabin Yang 已提交
536
void OpBase::Run(const framework::OperatorBase& op,
537 538
                 const NameVarMap<egr::EagerVariable>& ins,
                 const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
539 540 541
                 const framework::AttributeMap& attrs,
                 const framework::AttributeMap& default_attrs,
                 const platform::Place& place) {
542
  OpBaseRunImpl<egr::EagerVariable>(op, ins, outs, attrs, default_attrs, place);
J
Jiabin Yang 已提交
543 544
}

545
void ClearNoNeedBufferInputs(OpBase* op) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
576 577
      new_tensor->set_type(old_tensor.dtype());
      new_tensor->set_layout(old_tensor.layout());
578 579 580 581 582 583 584 585
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
586
    const framework::AttributeMap& default_attrs, const platform::Place& place,
587
    const std::map<std::string, std::string>& inplace_map) {
588 589 590 591 592
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

593 594
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
595
  if (grad_node && !grad_node->empty()) {
596 597 598 599
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
600 601 602 603 604 605 606
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

J
Jiabin Yang 已提交
607 608 609 610 611 612 613 614 615
std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameTensorMap& ins,
    const NameTensorMap& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
  // Do Nothing in Eager Mode.
  return nullptr;
}

616 617
}  // namespace imperative
}  // namespace paddle