test_elementwise_div_op.py 13.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
G
gongweibao 已提交
22 23 24


class ElementwiseDivOp(OpTest):
25

G
gongweibao 已提交
26 27
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
28
        self.python_api = paddle.divide
29
        self.dtype = np.float64
W
Wu Yi 已提交
30
        self.init_dtype()
G
gongweibao 已提交
31 32 33 34 35
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
H
hong 已提交
36

G
gongweibao 已提交
37
        self.inputs = {
W
Wu Yi 已提交
38 39
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
40 41 42
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

H
hong 已提交
43
    def check_eager(self):
H
hong 已提交
44
        return (not hasattr(self, "attrs") or (self.attrs["axis"] != -1))
H
hong 已提交
45

G
gongweibao 已提交
46
    def test_check_output(self):
H
hong 已提交
47
        self.check_output(check_eager=False)
G
gongweibao 已提交
48 49 50 51 52

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
53 54 55 56
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set("X"))
G
gongweibao 已提交
57 58

    def test_check_grad_ingore_y(self):
59 60 61 62
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set('Y'))
G
gongweibao 已提交
63

W
Wu Yi 已提交
64 65 66
    def init_dtype(self):
        pass

G
gongweibao 已提交
67

68 69
@unittest.skipIf(not core.is_compiled_with_cuda()
                 or not core.is_bfloat16_supported(core.CUDAPlace(0)),
70
                 "core is not compiled with CUDA and not support the bfloat16")
71
class TestElementwiseDivOpBF16(OpTest):
72

73 74
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
75
        self.python_api = paddle.divide
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.dtype = np.uint16

        x = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)

        out = np.divide(x, y)

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', no_grad_set=set('Y'))


106 107
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
108
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
109

110 111
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
112
        self.python_api = paddle.divide
113
        self.inputs = {
114
            'X': np.random.uniform(0.1, 1, [20, 3, 4]).astype(np.float64),
115
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
116 117 118 119
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
120
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
121

G
gongweibao 已提交
122 123
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
124
        self.python_api = paddle.divide
G
gongweibao 已提交
125
        self.inputs = {
126 127
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
128 129 130 131 132
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
133

G
gongweibao 已提交
134 135
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
136
        self.python_api = paddle.divide
G
gongweibao 已提交
137
        self.inputs = {
138 139
            'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
140 141 142 143
        }

        self.attrs = {'axis': 0}
        self.outputs = {
144 145
            'Out': np.divide(self.inputs['X'],
                             self.inputs['Y'].reshape(100, 1, 1))
G
gongweibao 已提交
146 147 148 149
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
150

G
gongweibao 已提交
151 152
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
153
        self.python_api = paddle.divide
G
gongweibao 已提交
154
        self.inputs = {
155 156
            'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
157 158 159 160
        }

        self.attrs = {'axis': 1}
        self.outputs = {
161 162
            'Out': np.divide(self.inputs['X'],
                             self.inputs['Y'].reshape(1, 100, 1))
G
gongweibao 已提交
163 164 165 166
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
167

G
gongweibao 已提交
168 169
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
170
        self.python_api = paddle.divide
G
gongweibao 已提交
171
        self.inputs = {
172 173
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
174 175 176
        }

        self.outputs = {
177 178
            'Out': np.divide(self.inputs['X'],
                             self.inputs['Y'].reshape(1, 1, 100))
G
gongweibao 已提交
179 180 181 182
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
183

G
gongweibao 已提交
184 185
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
186
        self.python_api = paddle.divide
G
gongweibao 已提交
187
        self.inputs = {
188 189
            'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float64")
G
gongweibao 已提交
190 191 192 193 194
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
195
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
G
gongweibao 已提交
196 197 198
        }


199
class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
200

201 202
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
203
        self.python_api = paddle.divide
204
        self.inputs = {
205 206
            'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float64")
207 208 209 210 211
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
212

213 214
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
215
        self.python_api = paddle.divide
216
        self.inputs = {
217 218
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float64")
219 220 221 222
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


223
class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
224

225 226
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
227
        self.python_api = paddle.divide
228
        self.inputs = {
229 230
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float64"),
231 232 233 234 235
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
236

237 238
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
239
        self.python_api = paddle.divide
240
        self.inputs = {
241 242
            'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float64"),
243 244 245 246 247
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
248

249 250
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
251
        self.python_api = paddle.divide
252
        self.inputs = {
253 254
            'X': np.random.uniform(0.1, 1, [10, 12]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float64"),
255 256 257 258 259 260 261
        }

        self.attrs = {'axis': 2}

        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


262
class TestElementwiseDivOp_INT(OpTest):
263

264 265
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
266
        self.python_api = paddle.divide
267 268 269
        self.dtype = np.int32
        self.init_dtype()
        self.inputs = {
270 271
            'X': np.random.randint(1, 5, size=[13, 17]).astype(self.dtype),
            'Y': np.random.randint(1, 5, size=[13, 17]).astype(self.dtype)
272 273 274 275 276 277 278 279 280 281
        }
        self.outputs = {'Out': self.inputs['X'] // self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        pass


282 283
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
284
class TestElementwiseDivOpFp16(ElementwiseDivOp):
285

W
Wu Yi 已提交
286 287 288 289 290 291 292
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
293 294 295 296
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=1,
                        no_grad_set=set("X"))
W
Wu Yi 已提交
297 298

    def test_check_grad_ingore_y(self):
299 300 301 302
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=1,
                        no_grad_set=set('Y'))
W
Wu Yi 已提交
303 304


305
class TestElementwiseDivBroadcast(unittest.TestCase):
306

307 308
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
309 310 311
            x_var = fluid.data(name='x',
                               dtype='float32',
                               shape=[None, 3, None, None])
312 313 314 315 316 317 318 319
            one = 2.
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
            out_result, = exe.run(feed={'x': x}, fetch_list=[out])
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
320
class TestDivideOp(unittest.TestCase):
321

S
ShenLiang 已提交
322 323 324 325
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
326

S
ShenLiang 已提交
327 328
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
329 330

    def test_dygraph(self):
S
ShenLiang 已提交
331 332 333 334 335 336 337 338 339
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
            z_expected = np.array([2., 0.6, 2.])
            self.assertEqual((np_z == z_expected).all(), True)
340 341


342
class TestComplexElementwiseDivOp(OpTest):
343

344 345
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
346
        self.python_api = paddle.divide
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out / np.conj(self.y)
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)

    def test_check_output(self):
H
hong 已提交
377
        self.check_output(check_eager=False)
378 379

    def test_check_grad_normal(self):
380 381 382 383
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
384 385

    def test_check_grad_ingore_x(self):
386 387 388 389 390
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
391 392

    def test_check_grad_ingore_y(self):
393 394 395 396 397
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
398 399


C
chentianyu03 已提交
400
class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
401

C
chentianyu03 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = np.real(self.grad_out / np.conj(self.y))
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)


G
gongweibao 已提交
416
if __name__ == '__main__':
417
    paddle.enable_static()
G
gongweibao 已提交
418
    unittest.main()