tensor.py 17.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
Q
update  
qiaolongfei 已提交
43
    Create an variable, which will hold a LoDTensor with data type dtype.
44 45

    Args:
Q
update  
qiaolongfei 已提交
46
        dtype(string): 'float32'|'int32'|..., the data type of the
47
            created tensor.
Q
update  
qiaolongfei 已提交
48
        name(string): The name of the created tensor, if not set,
49
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
51 52 53 54 55 56 57 58 59

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
60
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
61 62
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
63 64


65 66
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
67
                     name=None,
68 69 70 71
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
72 73 74 75 76 77
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

78 79 80 81 82 83 84 85 86 87 88
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
89 90 91 92 93 94
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
95
    """
Q
Qiao Longfei 已提交
96
    helper = LayerHelper("create_parameter", **locals())
97
    if attr is None:
X
xuwei06 已提交
98
        attr = ParamAttr(name=name)
99 100 101 102
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
121 122 123 124
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
125 126
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
127 128 129
    return var


130
def cast(x, dtype):
Y
Yu Yang 已提交
131
    """
Y
Yibing Liu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
             
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


159
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
160
    """
161 162 163
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
164
    and returns that as the output.
165 166 167 168

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
169 170
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
171 172 173 174 175 176 177

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
178 179 180 181 182 183 184 185 186 187 188
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


189
def sums(input, out=None):
K
kavyasrinet 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
209 210
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
211
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
212 213 214 215 216 217 218 219
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


220
def assign(input, output):
221 222 223 224 225 226
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
227
        input(Variable|numpy.ndarray): The source variable
228 229 230 231 232 233 234
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
235

236 237 238 239
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
240
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
241 242
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
243
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
244 245
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
246
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
247
            value_name = "fp32_values"
248
            values = [float(v) for v in input.flat]
249
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
250
            value_name = "int32_values"
251
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
252 253
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
254 255 256
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
257 258 259 260 261 262 263

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
264
                value_name: values
X
xuwei06 已提交
265 266 267 268
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
269 270 271
    return output


Q
QI JUN 已提交
272
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
273
    """
274 275
    **fill_constant**

276 277
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
278

279
    The attribute `stop_gradient` of the created tensor is set to True.
280 281

    Args:
282
        shape(tuple|list|None): Shape of the output tensor.
283
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
284 285
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
286
        force_cpu(True|False): data should be on CPU if set true.
287 288

    Returns:
289
        Variable: The tensor variable storing the output.
290 291 292 293 294

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
295
    """
296

Y
Yu Yang 已提交
297 298 299 300 301 302 303
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
304 305 306 307
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
308
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
309
        })
Y
Yu Yang 已提交
310 311 312 313
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
314
@templatedoc()
Y
Yu Yang 已提交
315 316 317 318 319
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
320
                                  output_dim_idx=0):
321
    """
Y
yuyang18 已提交
322
    ${comment}
323 324 325

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
326 327 328
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

329
    Args:
Y
yuyang18 已提交
330
        input(${input_type}): ${input_comment}.
331

Y
yuyang18 已提交
332
        shape(${shape_type}): ${shape_comment}.
333

Y
yuyang18 已提交
334 335 336
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
337

Y
yuyang18 已提交
338 339 340 341 342
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
343
        ${out_comment}.
344
    """
Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
424
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
425
    """
426 427 428 429 430 431 432 433 434
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
435
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
436 437 438 439 440 441 442 443

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
444 445 446 447
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
448
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
449
    """
450 451 452 453 454 455 456 457 458
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
459
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
460 461 462 463 464 465 466 467

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
468 469
    """
    return fill_constant(value=0.0, **locals())
470 471


F
fengjiayi 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
531 532
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
533
        file_path(str): The file path where variables will be saved.
534
        overwrite(bool): Whether or not cover the given file when it has already
535 536
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})