adamax.py 14.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings

17
from paddle import _C_ops
18

19
from ..fluid import core, framework
20
from ..fluid.dygraph import no_grad
21 22
from ..fluid.framework import name_scope
from .optimizer import Optimizer
M
MRXLT 已提交
23

24 25
__all__ = []

M
MRXLT 已提交
26 27

class Adamax(Optimizer):
28
    r"""
29
    The Adamax optimizer is implemented based on the Adamax Optimization
M
MRXLT 已提交
30 31 32 33 34 35 36 37 38 39
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.

    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

40
        moment\_out & = {\beta}_1 * moment + (1 - {\beta}_1) * grad
M
MRXLT 已提交
41

42
        inf\_norm\_out & = max({\beta}_2 * inf\_norm + \epsilon, |grad|)
M
MRXLT 已提交
43

44
        learning\_rate & = \frac{learning\_rate}{1 - {\beta}_1^t}
M
MRXLT 已提交
45

46
        param\_out & = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out}
M
MRXLT 已提交
47 48 49 50 51 52 53

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
54 55
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
56 57 58 59 60 61
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
62 63 64
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
65
            then the parameters are list of dict. Note that the learning_rate in parameter groups
66
            represents the scale of base learning_rate.
67
            The default value is None in static graph mode, at this time all parameters will be updated.
68
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
69
            It can be a float value as coeff of L2 regularization or
70 71 72 73 74
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
75 76
        grad_clip (GradientClipBase, optional): Gradient clipping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three clipping strategies
77
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
78 79 80 81 82 83 84 85 86 87
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, Adamax doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            >>> import paddle

            >>> inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
            >>> linear = paddle.nn.Linear(10, 10)
            >>> inp = paddle.to_tensor(inp)
            >>> out = linear(inp)
            >>> loss = paddle.mean(out)

            >>> beta1 = paddle.to_tensor([0.9], dtype="float32")
            >>> beta2 = paddle.to_tensor([0.99], dtype="float32")

            >>> adam = paddle.optimizer.Adamax(learning_rate=0.1,
            ...         parameters=linear.parameters(),
            ...         beta1=beta1,
            ...         beta2=beta2,
            ...         weight_decay=0.01
            ... )
            >>> out.backward()
            >>> adam.step()
            >>> adam.clear_grad()


            >>> # Note that the learning_rate of linear_2 is 0.01.
            >>> linear_1 = paddle.nn.Linear(10, 10)
            >>> linear_2 = paddle.nn.Linear(10, 10)
            >>> inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            >>> out = linear_1(inp)
            >>> out = linear_2(out)
            >>> loss = paddle.mean(out)
            >>> adam = paddle.optimizer.Adamax(
            ...     learning_rate=0.1,
            ...     parameters=[{
            ...         'params': linear_1.parameters()
            ...     }, {
            ...         'params': linear_2.parameters(),
            ...         'weight_decay': 0.001,
            ...         'learning_rate': 0.1,
            ...         'beta1': 0.8
            ...     }],
            ...     weight_decay=0.01,
            ...     beta1=0.9
            ... )
            >>> out.backward()
            >>> adam.step()
            >>> adam.clear_grad()
M
MRXLT 已提交
134 135 136 137 138
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
    _beta1_pow_acc_str = "beta1_pow_acc"

139 140 141 142 143 144 145 146 147 148 149
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
150 151 152 153
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
M
MRXLT 已提交
154 155 156 157 158 159
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
160
        super().__init__(
161 162 163 164 165 166
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
167 168 169 170
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
171 172 173
        self._multi_precision = False
        self._master_weights = {}

174 175 176
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
177
            'epsilon': epsilon,
178
        }
M
MRXLT 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
        if self._is_dtype_fp16_or_bf16(acc_dtype):
            acc_dtype = core.VarDesc.VarType.FP32

        self._add_accumulator(self._moment_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._inf_norm_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            fill_value=self._beta1,
            shape=[1],
        )

M
MRXLT 已提交
194
    def _create_accumulators(self, block, parameters):
195 196 197
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

M
MRXLT 已提交
198 199
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
W
wanghuancoder 已提交
200 201
            if p.name in self._already_create_accumulater:
                continue
202
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
203 204
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
W
wanghuancoder 已提交
205
                self._already_create_accumulater.add(p.name)
206 207
                continue
            if (
208
                self._is_dtype_fp16_or_bf16(p.dtype)
209 210 211
                and not self._multi_precision
            ):
                warnings.warn(
212
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
213 214 215
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
            self._add_moments_pows(p)
W
wanghuancoder 已提交
216
            self._already_create_accumulater.add(p.name)
217

M
MRXLT 已提交
218 219
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
220 221
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
222

223 224 225 226
        moment = self._get_accumulator_master(
            self._moment_acc_str, param_and_grad[0]
        )
        inf_norm = self._get_accumulator_master(
227 228
            self._inf_norm_acc_str, param_and_grad[0]
        )
229

230 231
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
232 233 234 235 236 237 238
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )

239
        beta1_pow_acc = self._get_accumulator_master(
240 241
            self._beta1_pow_acc_str, param_and_grad[0]
        )
242
        if framework.in_dygraph_mode():
243 244 245 246 247 248 249
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
250
                master_weight,
251 252 253
                self._beta1,
                self._beta2,
                self._epsilon,
254
                find_master,
255
            )
256

257 258
        else:
            # create the adamax optimize op
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": beta1_pow_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm,
            }
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
            attrs = {
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "multi_precision": find_master,
            }
281 282
            adamax_op = block.append_op(
                type=self.type,
283 284 285
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
286 287
                stop_gradient=True,
            )
288 289

            return adamax_op
M
MRXLT 已提交
290 291

    def _finish_update(self, block, parameters_and_grads):
292
        """Update Beta1 Power accumulator"""
M
MRXLT 已提交
293
        assert isinstance(block, framework.Block)
294 295 296 297
        if isinstance(parameters_and_grads, list):
            for param, grad in parameters_and_grads:
                if grad is None or param.stop_gradient is True:
                    continue
298
                if framework.in_dygraph_mode():
299
                    beta1_pow_acc = self._get_accumulator_master(
300 301
                        self._beta1_pow_acc_str, param
                    )
302
                    with no_grad():
303 304 305
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
306
                        beta1_pow_acc.copy_(tmp, False)
307 308 309 310
                else:
                    with param.block.program._optimized_guard(
                        [param, grad]
                    ), name_scope('adamax'):
311
                        beta1_pow_acc = self._get_accumulator_master(
312 313 314 315 316 317 318 319 320
                            self._beta1_pow_acc_str, param
                        )
                        block.append_op(
                            type="scale",
                            inputs={"X": beta1_pow_acc},
                            outputs={"Out": beta1_pow_acc},
                            attrs={"scale": self._beta1},
                            stop_gradient=True,
                        )
321 322 323 324
        else:
            for param, grad in parameters_and_grads['params']:
                if grad is None or param.stop_gradient is True:
                    continue
325
                if framework.in_dygraph_mode():
326
                    beta1_pow_acc = self._get_accumulator_master(
327 328
                        self._beta1_pow_acc_str, param
                    )
329
                    self._beta1 = parameters_and_grads.get(
330 331
                        'beta1', self._default_dict['beta1']
                    )
332
                    with no_grad():
333 334 335
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
336
                        beta1_pow_acc.copy_(tmp, False)
337 338 339 340
                else:
                    with param.block.program._optimized_guard(
                        [param, grad]
                    ), name_scope('adamax'):
341
                        beta1_pow_acc = self._get_accumulator_master(
342 343 344 345 346 347 348 349 350 351 352 353
                            self._beta1_pow_acc_str, param
                        )
                        self._beta1 = parameters_and_grads.get(
                            'beta1', self._default_dict['beta1']
                        )
                        block.append_op(
                            type="scale",
                            inputs={"X": beta1_pow_acc},
                            outputs={"Out": beta1_pow_acc},
                            attrs={"scale": self._beta1},
                            stop_gradient=True,
                        )
354 355 356 357 358 359 360

    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        parameters = parameters.get('params')
        return parameters