adamax.py 12.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops
16 17

from ..fluid import framework
18
from ..fluid.dygraph import no_grad
19 20
from ..fluid.framework import name_scope
from .optimizer import Optimizer
M
MRXLT 已提交
21

22 23
__all__ = []

M
MRXLT 已提交
24 25

class Adamax(Optimizer):
26
    r"""
27
    The Adamax optimizer is implemented based on the Adamax Optimization
M
MRXLT 已提交
28 29 30 31 32 33 34 35 36 37
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.

    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

38
        moment\_out & = {\beta}_1 * moment + (1 - {\beta}_1) * grad
M
MRXLT 已提交
39

40
        inf\_norm\_out & = max({\beta}_2 * inf\_norm + \epsilon, |grad|)
M
MRXLT 已提交
41

42
        learning\_rate & = \frac{learning\_rate}{1 - {\beta}_1^t}
M
MRXLT 已提交
43

44
        param\_out & = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out}
M
MRXLT 已提交
45 46 47 48 49 50 51

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
52 53
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
54 55 56 57 58 59
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
60 61 62 63 64
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
65
            The default value is None in static graph mode, at this time all parameters will be updated.
66 67 68 69 70 71 72
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
73 74 75
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
76 77 78 79 80 81 82 83 84 85
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, Adamax doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
86

M
MRXLT 已提交
87 88
            import paddle

89
            inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adamax(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adamax(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
126
                beta1=0.9)
127 128 129
            out.backward()
            adam.step()
            adam.clear_grad()
M
MRXLT 已提交
130 131 132 133 134
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
    _beta1_pow_acc_str = "beta1_pow_acc"

135 136 137 138 139 140 141 142 143 144 145
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
146 147 148 149
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
M
MRXLT 已提交
150 151 152 153 154 155
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
156
        super().__init__(
157 158 159 160 161 162
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
163 164 165 166
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
167 168 169
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
170
            'epsilon': epsilon,
171
        }
M
MRXLT 已提交
172 173

    def _create_accumulators(self, block, parameters):
174 175 176
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

M
MRXLT 已提交
177 178 179 180
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
181 182 183 184 185 186
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
M
MRXLT 已提交
187 188 189

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
190 191
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
192 193

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
194 195 196 197 198 199
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
200

201
        if framework.in_dygraph_mode():
202 203 204 205 206 207 208 209 210 211 212
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
213 214 215 216 217 218 219 220 221 222
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
223
                    "Beta1Pow": beta1_pow_acc,
224 225 226 227
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
228
                    "InfNormOut": inf_norm,
229 230 231 232
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
233
                    "epsilon": self._epsilon,
234
                },
235 236
                stop_gradient=True,
            )
237 238

            return adamax_op
M
MRXLT 已提交
239 240

    def _finish_update(self, block, parameters_and_grads):
241
        """Update Beta1 Power accumulator"""
M
MRXLT 已提交
242
        assert isinstance(block, framework.Block)
243 244 245 246
        if isinstance(parameters_and_grads, list):
            for param, grad in parameters_and_grads:
                if grad is None or param.stop_gradient is True:
                    continue
247 248
                if framework.in_dygraph_mode():
                    beta1_pow_acc = self._get_accumulator(
249 250
                        self._beta1_pow_acc_str, param
                    )
251
                    with no_grad():
252 253 254
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
255
                        beta1_pow_acc.copy_(tmp, False)
256 257 258 259 260 261 262 263 264 265 266 267 268 269
                else:
                    with param.block.program._optimized_guard(
                        [param, grad]
                    ), name_scope('adamax'):
                        beta1_pow_acc = self._get_accumulator(
                            self._beta1_pow_acc_str, param
                        )
                        block.append_op(
                            type="scale",
                            inputs={"X": beta1_pow_acc},
                            outputs={"Out": beta1_pow_acc},
                            attrs={"scale": self._beta1},
                            stop_gradient=True,
                        )
270 271 272 273
        else:
            for param, grad in parameters_and_grads['params']:
                if grad is None or param.stop_gradient is True:
                    continue
274 275
                if framework.in_dygraph_mode():
                    beta1_pow_acc = self._get_accumulator(
276 277
                        self._beta1_pow_acc_str, param
                    )
278
                    self._beta1 = parameters_and_grads.get(
279 280
                        'beta1', self._default_dict['beta1']
                    )
281
                    with no_grad():
282 283 284
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
285
                        beta1_pow_acc.copy_(tmp, False)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                else:
                    with param.block.program._optimized_guard(
                        [param, grad]
                    ), name_scope('adamax'):
                        beta1_pow_acc = self._get_accumulator(
                            self._beta1_pow_acc_str, param
                        )
                        self._beta1 = parameters_and_grads.get(
                            'beta1', self._default_dict['beta1']
                        )
                        block.append_op(
                            type="scale",
                            inputs={"X": beta1_pow_acc},
                            outputs={"Out": beta1_pow_acc},
                            attrs={"scale": self._beta1},
                            stop_gradient=True,
                        )
303 304 305 306 307 308 309

    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        parameters = parameters.get('params')
        return parameters