未验证 提交 9e6f4433 编写于 作者: C Candy2Tang 提交者: GitHub

[xdoctest][task 105]reformat example code with google style in...

[xdoctest][task 105]reformat example code with google style in python/paddle/optimizer/adamax.py (#56167)

* [xdoctest][task 105]reformat example code with google style in python/paddle/optimizer/adamax.py

* fix word typo test=docs_preview

* fix comment test=docs_preview
上级 81874b92
......@@ -62,18 +62,18 @@ class Adamax(Optimizer):
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
then the parameters are list of dict. Note that the learning_rate in parameter groups
represents the scale of base learning_rate.
The default value is None in static graph mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
It canbe a float value as coeff of L2 regularization or
It can be a float value as coeff of L2 regularization or
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
the regularization setting here in optimizer will be ignored for this parameter.
Otherwise, the regularization setting here in optimizer will take effect.
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
grad_clip (GradientClipBase, optional): Gradient clipping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three clipping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
......@@ -86,49 +86,51 @@ class Adamax(Optimizer):
Examples:
.. code-block:: python
import paddle
inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
adam = paddle.optimizer.Adamax(learning_rate=0.1,
parameters=linear.parameters(),
beta1=beta1,
beta2=beta2,
weight_decay=0.01)
out.backward()
adam.step()
adam.clear_grad()
#Note that the learning_rate of linear_2 is 0.01.
linear_1 = paddle.nn.Linear(10, 10)
linear_2 = paddle.nn.Linear(10, 10)
inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
out = linear_1(inp)
out = linear_2(out)
loss = paddle.mean(out)
adam = paddle.optimizer.Adamax(
learning_rate=0.1,
parameters=[{
'params': linear_1.parameters()
}, {
'params': linear_2.parameters(),
'weight_decay': 0.001,
'learning_rate': 0.1,
'beta1': 0.8
}],
weight_decay=0.01,
beta1=0.9)
out.backward()
adam.step()
adam.clear_grad()
>>> import paddle
>>> inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
>>> linear = paddle.nn.Linear(10, 10)
>>> inp = paddle.to_tensor(inp)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> beta1 = paddle.to_tensor([0.9], dtype="float32")
>>> beta2 = paddle.to_tensor([0.99], dtype="float32")
>>> adam = paddle.optimizer.Adamax(learning_rate=0.1,
... parameters=linear.parameters(),
... beta1=beta1,
... beta2=beta2,
... weight_decay=0.01
... )
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()
>>> # Note that the learning_rate of linear_2 is 0.01.
>>> linear_1 = paddle.nn.Linear(10, 10)
>>> linear_2 = paddle.nn.Linear(10, 10)
>>> inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
>>> out = linear_1(inp)
>>> out = linear_2(out)
>>> loss = paddle.mean(out)
>>> adam = paddle.optimizer.Adamax(
... learning_rate=0.1,
... parameters=[{
... 'params': linear_1.parameters()
... }, {
... 'params': linear_2.parameters(),
... 'weight_decay': 0.001,
... 'learning_rate': 0.1,
... 'beta1': 0.8
... }],
... weight_decay=0.01,
... beta1=0.9
... )
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()
"""
_moment_acc_str = "moment"
_inf_norm_acc_str = "inf_norm"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册