test_elementwise_add_op.py 25.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
19

20
import paddle
21
import paddle.fluid as fluid
K
Kexin Zhao 已提交
22
import paddle.fluid.core as core
23 24 25 26 27 28 29


def broadcast_wrapper(shape=[1, 10, 12, 1]):
    def add_wrapper(x, y, axis=-1):
        return x + y.reshape(shape)

    return add_wrapper
G
gongweibao 已提交
30 31


K
Kexin Zhao 已提交
32
class TestElementwiseAddOp(OpTest):
33 34 35
    def init_kernel_type(self):
        self.use_mkldnn = False

G
gongweibao 已提交
36 37
    def setUp(self):
        self.op_type = "elementwise_add"
H
hong 已提交
38
        self.python_api = paddle.add
K
Kexin Zhao 已提交
39 40
        self.init_dtype()
        self.init_input_output()
41
        self.init_kernel_type()
K
Kexin Zhao 已提交
42
        self.init_axis()
K
Kexin Zhao 已提交
43

G
gongweibao 已提交
44
        self.inputs = {
K
Kexin Zhao 已提交
45
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
46
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
G
gongweibao 已提交
47
        }
48
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
K
Kexin Zhao 已提交
49
        self.outputs = {'Out': self.out}
G
gongweibao 已提交
50

51
    def check_dygraph(self):
52
        return not self.use_mkldnn and self.axis == -1
H
hong 已提交
53

G
gongweibao 已提交
54
    def test_check_output(self):
55
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
56
        self.check_output(
57
            check_dygraph=self.check_dygraph(),
58
        )
G
gongweibao 已提交
59 60

    def test_check_grad_normal(self):
61
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
62 63
        if self.dtype == np.float16:
            return
64 65 66
        self.check_grad(
            ['X', 'Y'],
            'Out',
67
            check_dygraph=self.check_dygraph(),
68
        )
G
gongweibao 已提交
69 70

    def test_check_grad_ingore_x(self):
71
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
72 73
        if self.dtype == np.float16:
            return
74 75 76 77
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
78
            check_dygraph=self.check_dygraph(),
79
        )
G
gongweibao 已提交
80 81

    def test_check_grad_ingore_y(self):
82
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
83 84
        if self.dtype == np.float16:
            return
85 86 87 88
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
89
            check_dygraph=self.check_dygraph(),
90
        )
G
gongweibao 已提交
91

K
Kexin Zhao 已提交
92 93 94 95 96 97
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.add(self.x, self.y)

    def init_dtype(self):
98
        self.dtype = np.float64
K
Kexin Zhao 已提交
99 100

    def init_axis(self):
101
        self.axis = -1
K
Kexin Zhao 已提交
102 103


104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class TestElementwiseAddOp_ZeroDim1(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.out = np.add(self.x, self.y)


class TestElementwiseAddOp_ZeroDim2(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.add(self.x, self.y)


class TestElementwiseAddOp_ZeroDim3(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, []).astype(self.dtype)
        self.out = np.add(self.x, self.y)


125 126 127
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
128
class TestFP16ElementwiseAddOp(TestElementwiseAddOp):
K
Kexin Zhao 已提交
129
    def init_dtype(self):
K
Kexin Zhao 已提交
130 131 132
        self.dtype = np.float16

    def test_check_output(self):
133
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
134 135 136
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
137
                self.check_output_with_place(
138 139
                    place,
                    atol=1e-3,
140
                )
K
Kexin Zhao 已提交
141

G
gongweibao 已提交
142

143
@unittest.skipIf(
144 145
    not core.is_compiled_with_cuda()
    or core.cudnn_version() < 8100
146
    or paddle.device.cuda.get_device_capability()[0] < 8,
147
    "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0",
148
)
149 150 151
class TestBF16ElementwiseAddOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_add"
152
        self.python_api = paddle.add
153 154 155 156 157 158 159 160 161
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.add(self.x, self.y)

        self.axis = -1

        self.inputs = {
162 163 164 165 166 167
            'X': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.x)
            ),
            'Y': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.y)
            ),
168 169 170 171 172 173
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
174
        self.check_output_with_place(place)
175 176 177

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
178
        self.check_grad_with_place(place, ['X', 'Y'], 'Out')
179 180 181

    def test_check_grad_ingore_x(self):
        place = core.CUDAPlace(0)
182
        self.check_grad_with_place(place, ['Y'], 'Out', no_grad_set=set("X"))
183 184 185

    def test_check_grad_ingore_y(self):
        place = core.CUDAPlace(0)
186
        self.check_grad_with_place(place, ['X'], 'Out', no_grad_set=set('Y'))
187 188


189
@skip_check_grad_ci(
190 191
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
K
Kexin Zhao 已提交
192
class TestElementwiseAddOp_scalar(TestElementwiseAddOp):
K
Kexin Zhao 已提交
193 194 195 196 197 198
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y


199
@skip_check_grad_ci(
200 201
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
K
Kexin Zhao 已提交
202 203 204 205 206
class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y
207 208


209
@skip_check_grad_ci(
210 211
    reason="[skip shape check] Use y_shape(1,1) to test broadcast."
)
K
Kexin Zhao 已提交
212
class TestElementwiseAddOp_scalar2(TestElementwiseAddOp):
K
Kexin Zhao 已提交
213 214 215 216 217 218
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1, 1).astype(self.dtype)
        self.out = self.x + self.y


219
@skip_check_grad_ci(
220 221
    reason="[skip shape check] Use y_shape(1,1) to test broadcast."
)
K
Kexin Zhao 已提交
222 223 224 225 226
class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1, 1).astype(self.dtype)
        self.out = self.x + self.y
227 228


K
Kexin Zhao 已提交
229
class TestElementwiseAddOp_Vector(TestElementwiseAddOp):
K
Kexin Zhao 已提交
230
    def init_input_output(self):
231 232
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
K
Kexin Zhao 已提交
233 234 235 236 237
        self.out = np.add(self.x, self.y)


class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp):
    def init_input_output(self):
238 239
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
K
Kexin Zhao 已提交
240
        self.out = np.add(self.x, self.y)
G
gongweibao 已提交
241 242


K
Kexin Zhao 已提交
243
class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp):
K
Kexin Zhao 已提交
244
    def init_input_output(self):
245 246 247
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1)
248
        self.python_api = broadcast_wrapper(shape=[100, 1, 1])
G
gongweibao 已提交
249

K
Kexin Zhao 已提交
250 251 252 253 254 255
    def init_axis(self):
        self.axis = 0


class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp):
    def init_input_output(self):
256 257 258
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1)
259
        self.python_api = broadcast_wrapper(shape=[100, 1, 1])
K
Kexin Zhao 已提交
260 261 262

    def init_axis(self):
        self.axis = 0
G
gongweibao 已提交
263 264


K
Kexin Zhao 已提交
265
class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp):
K
Kexin Zhao 已提交
266
    def init_input_output(self):
267 268 269
        self.x = np.random.rand(2, 100, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 100, 1)
270
        self.python_api = broadcast_wrapper(shape=[1, 100, 1])
G
gongweibao 已提交
271

K
Kexin Zhao 已提交
272 273 274 275 276 277
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_broadcast_1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
278 279 280
        self.x = np.random.rand(2, 100, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 100, 1)
281
        self.python_api = broadcast_wrapper(shape=[1, 100, 1])
K
Kexin Zhao 已提交
282 283 284

    def init_axis(self):
        self.axis = 1
G
gongweibao 已提交
285 286


K
Kexin Zhao 已提交
287
class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp):
K
Kexin Zhao 已提交
288
    def init_input_output(self):
289 290 291
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1, 100)
292
        self.python_api = broadcast_wrapper(shape=[1, 1, 100])
G
gongweibao 已提交
293

K
Kexin Zhao 已提交
294 295 296

class TestFP16ElementwiseAddOp_broadcast_2(TestFP16ElementwiseAddOp):
    def init_input_output(self):
297 298 299
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1, 100)
300
        self.python_api = broadcast_wrapper(shape=[1, 1, 100])
G
gongweibao 已提交
301 302


K
Kexin Zhao 已提交
303
class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp):
K
Kexin Zhao 已提交
304
    def init_input_output(self):
305
        self.x = np.random.rand(2, 10, 12, 1).astype(self.dtype)
306 307
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12, 1)
308
        self.python_api = broadcast_wrapper(shape=[1, 10, 12, 1])
G
gongweibao 已提交
309

K
Kexin Zhao 已提交
310 311 312 313 314 315
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_broadcast_3(TestFP16ElementwiseAddOp):
    def init_input_output(self):
316 317 318
        self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12, 1)
319
        self.python_api = broadcast_wrapper(shape=[1, 10, 12, 1])
K
Kexin Zhao 已提交
320 321 322

    def init_axis(self):
        self.axis = 1
G
gongweibao 已提交
323 324


K
Kexin Zhao 已提交
325
class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp):
K
Kexin Zhao 已提交
326
    def init_input_output(self):
327
        self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype)
328 329
        self.y = np.random.rand(100, 1).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1, 1)
330
        self.python_api = broadcast_wrapper(shape=[100, 1, 1, 1])
K
Kexin Zhao 已提交
331 332 333

    def init_axis(self):
        self.axis = 0
334

K
Kexin Zhao 已提交
335 336 337

class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp):
    def init_input_output(self):
338
        self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype)
339 340
        self.y = np.random.rand(100, 1).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1, 1)
341
        self.python_api = broadcast_wrapper(shape=[100, 1, 1, 1])
K
Kexin Zhao 已提交
342 343 344

    def init_axis(self):
        self.axis = 0
345 346


347 348
class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp):
    def init_input_output(self):
349 350
        self.x = np.random.rand(10, 3, 12).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12).astype(self.dtype)
351 352 353 354 355
        self.out = self.x + self.y


class TestFP16ElementwiseAddOp_broadcast_5(TestFP16ElementwiseAddOp):
    def init_input_output(self):
356 357
        self.x = np.random.rand(10, 3, 12).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12).astype(self.dtype)
358 359 360 361 362
        self.out = self.x + self.y


class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp):
    def init_input_output(self):
363 364
        self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype)
        self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype)
365 366 367 368 369 370 371
        self.out = self.x + self.y


class TestElementwiseAddOp_broadcast_7(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(1, 1, 20, 5).astype(self.dtype)
        self.y = np.random.rand(20, 5, 1, 1).astype(self.dtype)
372 373 374 375 376
        self.out = self.x + self.y


class TestFP16ElementwiseAddOp_broadcast_6(TestFP16ElementwiseAddOp):
    def init_input_output(self):
377 378
        self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype)
        self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype)
379 380 381
        self.out = self.x + self.y


K
Kexin Zhao 已提交
382
class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp):
K
Kexin Zhao 已提交
383
    def init_input_output(self):
384 385 386
        self.x = np.random.rand(2, 10, 12).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12)
Q
qijun 已提交
387

K
Kexin Zhao 已提交
388 389 390 391 392 393
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp):
    def init_input_output(self):
394 395 396
        self.x = np.random.rand(2, 10, 12).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12)
K
Kexin Zhao 已提交
397 398 399

    def init_axis(self):
        self.axis = 1
Q
qijun 已提交
400 401


402
@skip_check_grad_ci(
403 404
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
K
Kexin Zhao 已提交
405
class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp):
K
Kexin Zhao 已提交
406
    def init_input_output(self):
407
        self.x = np.random.rand(100, 1).astype(self.dtype)
K
Kexin Zhao 已提交
408 409
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1)
Q
qijun 已提交
410

K
Kexin Zhao 已提交
411 412 413 414
    def init_axis(self):
        self.axis = 1


415
@skip_check_grad_ci(
416 417
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
K
Kexin Zhao 已提交
418 419
class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
420
        self.x = np.random.rand(100, 1).astype(self.dtype)
K
Kexin Zhao 已提交
421 422 423 424 425
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1)

    def init_axis(self):
        self.axis = 1
Q
qijun 已提交
426 427


428 429
class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp):
    def init_input_output(self):
430 431
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100, 1, 1).astype(self.dtype)
432 433 434 435 436 437 438 439
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp):
    def init_input_output(self):
440 441
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100, 1, 1).astype(self.dtype)
442 443 444 445 446 447
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


448 449
class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp):
    def init_input_output(self):
450 451
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(1, 1, 100).astype(self.dtype)
452 453 454 455 456 457
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


458 459
class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
460
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
461 462 463 464 465 466 467
        self.y = np.random.rand(1, 1, 100).astype(self.dtype)
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


468 469
class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp):
    def init_input_output(self):
470 471
        self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12, 1).astype(self.dtype)
472 473 474 475 476 477 478 479
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestElementwiseAddOp):
    def init_input_output(self):
480
        self.x = np.random.rand(10, 12).astype(self.dtype)
481
        self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype)
482 483 484 485 486 487
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = 2


488 489 490
class TestElementwiseAddOp_same_shape_ysize_large(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(10, 1, 12).astype(self.dtype)
491
        self.y = np.random.rand(10, 2, 12).astype(self.dtype)
492 493 494 495 496 497
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = 0


498 499 500 501
class TestAddApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.add(x, y, name)

502 503 504 505 506
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

507
            y_1 = self._executed_api(x, y, name='add_res')
508 509
            self.assertEqual(('add_res' in y_1.name), True)

Y
Yang Zhang 已提交
510
    def test_declarative(self):
511 512 513 514 515
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
516
                    "y": np.array([1, 5, 2]).astype('float32'),
517 518 519 520
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
521
            z = self._executed_api(x, y)
522 523 524 525

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
526
            z_expected = np.array([3.0, 8.0, 6.0])
527 528 529 530 531 532 533 534
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
535
            z = self._executed_api(x, y)
536
            np_z = z.numpy()
537
            z_expected = np.array([3.0, 8.0, 6.0])
538 539 540
            self.assertEqual((np_z == z_expected).all(), True)


541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
class TestAddInplaceApi(TestAddApi):
    def _executed_api(self, x, y, name=None):
        return x.add_(y, name)


class TestAddInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.add_(y)
        numpy_result = self.x_numpy + self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestAddInplaceBroadcastSuccess2(TestAddInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestAddInplaceBroadcastSuccess3(TestAddInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestAddInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.add_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestAddInplaceBroadcastError2(TestAddInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestAddInplaceBroadcastError3(TestAddInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


604 605 606
class TestComplexElementwiseAddOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_add"
607
        self.python_api = paddle.add
608 609
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
610 611 612 613 614
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
615
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
616 617 618 619 620 621 622 623
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
624
        self.x = np.random.random(self.shape).astype(
625 626
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
627
        self.y = np.random.random(self.shape).astype(
628 629
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
630 631 632
        self.out = self.x + self.y

    def init_grad_input_output(self):
633 634 635
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
636 637 638 639
        self.grad_x = self.grad_out
        self.grad_y = self.grad_out

    def test_check_output(self):
640
        self.check_output()
641 642

    def test_check_grad_normal(self):
643 644 645 646 647 648
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
649 650

    def test_check_grad_ingore_x(self):
651 652 653 654 655 656 657
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
658 659

    def test_check_grad_ingore_y(self):
660 661 662 663 664 665 666
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
667 668


669 670 671 672
class TestRealComplexElementwiseAddOp(TestComplexElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
673 674
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
675 676 677
        self.out = self.x + self.y

    def init_grad_input_output(self):
678 679 680
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
681 682 683 684
        self.grad_x = np.real(self.grad_out)
        self.grad_y = self.grad_out


685 686 687 688 689 690 691 692 693
class TestBoolAddFloatElementwiseAddop(unittest.TestCase):
    def test_static_add(self):
        paddle.enable_static()
        a = 1.5
        b = paddle.full([4, 5, 6], True, dtype='bool')
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP32)
        paddle.enable_static()

694
    def test_dygraph_add(self):
695 696
        paddle.disable_static()
        a = 1.5
697 698
        b = paddle.full([2], True, dtype='bool')
        # special case: scalar + tensor(bool)
699 700 701
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP32)

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor + tensor
        expect_out = np_a + np_b
        actual_out = tensor_a + tensor_b
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: tensor + scalar
        expect_out = np_a + 1
        actual_out = tensor_a + 1
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: scalar + tenor
        expect_out = 1 + np_a
        actual_out = 1 + tensor_a
        np.testing.assert_allclose(actual_out, expect_out)

        paddle.enable_static()

725

726
class TestElementwiseAddop1(unittest.TestCase):
727
    def test_dygraph_add(self):
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray + tenor
        expect_out = np_a + np_b
        actual_out = np_a + tensor_b
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: tensor + nparray
        actual_out = tensor_a + np_b
        np.testing.assert_allclose(actual_out, expect_out)

        paddle.enable_static()


748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
class TestTensorAddNumpyScalar(unittest.TestCase):
    def test_float32_add(self):
        paddle.disable_static()
        a = paddle.full([4, 5, 6], 1.5, dtype='float32')
        b = np.array([1.5], dtype='float32')[0]
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP32)

    def test_float16_add(self):
        if not core.is_compiled_with_cuda():
            return
        paddle.disable_static()
        a = paddle.full([4, 5, 6], 1.5, dtype='float16')
        b = np.array([1.5], dtype='float16')[0]
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP16)


G
gongweibao 已提交
766
if __name__ == '__main__':
767
    paddle.enable_static()
G
gongweibao 已提交
768
    unittest.main()