data_transfer.cc 25.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/phi/backends/onednn/onednn_context.h"
#endif

25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
34 35
                              bool use_local_scope,
                              bool is_fetch_v2) {
36 37 38 39 40
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
41 42 43 44 45
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
46
                             scope_,
47
                             is_fetch_v2);
L
Leo Chen 已提交
48
    if (op) {
49 50
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
51
    }
52 53 54 55 56 57
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
58 59 60 61 62
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
63
                            scope_);
L
Leo Chen 已提交
64
    if (op) {
65 66
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
67
    }
68 69 70 71 72 73 74 75
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
76

77 78
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
79
    if (op) {
80 81
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
82
    }
83 84 85 86 87
    is_transferred = true;
  }
  return is_transferred;
}

88
void DataTranferHelper::RunAndConstructShareNode(
89 90
    const std::string& src_var_name,
    const std::string& dst_var_name,
91 92 93 94 95 96 97 98 99 100
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

101 102
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
103 104 105 106

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

107
void DataTranferHelper::RunAndConstructOpFuncNode(
108 109
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
110 111 112 113 114 115
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
116 117
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
118
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);
119
  op.get()->Info().infer_shape_(&infer_shape_ctx);
120 121 122 123 124 125 126 127 128 129 130

  // 2. choose kernel

  // prepare a ptr to OperatorWithKernel
  OperatorBase* op_ptr = op.get();
  if (dynamic_cast<framework::OperatorWithKernel*>(op_ptr) == nullptr) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "%s should be OperatorWithKernel type.", op_ptr->Type()));
  }
  auto op_with_kernel = static_cast<framework::OperatorWithKernel*>(op_ptr);

131 132
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
133 134 135 136 137 138 139 140 141
  auto exec_ctx = ExecutionContext(*op, Scope(), *dev_ctx, runtime_context);
  auto expected_kernel_key = op_with_kernel->GetExpectedKernelType(exec_ctx);

  VLOG(6) << "expected_kernel_key " << expected_kernel_key << "\n";
  VLOG(6) << "op_with_kernel Type() " << op_with_kernel->Type() << "\n";

  bool run_phi_kernel = false;

  // check if phi kernel exists
142 143
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
          op_with_kernel->Type())) {
144 145 146
    auto phi_kernel_key = op_with_kernel->ChoosePhiKernel(exec_ctx);
    VLOG(6) << "phi_kernel_key " << phi_kernel_key << "\n";

147 148 149
    if (op_with_kernel->PhiKernel()->IsValid()) {
      run_phi_kernel = true;
    }
150
  }
151 152 153 154 155

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
156 157 158 159 160 161 162 163 164 165 166 167 168

  if (!run_phi_kernel) {
    op_with_kernel->ChooseKernel(exec_ctx);
    new_op_func_node.kernel_func_ = *op_with_kernel->kernel_func();
    new_op_func_node.kernel_func_(exec_ctx);
  } else {
    new_op_func_node.phi_kernel_ = op_with_kernel->PhiKernel();
    phi::KernelContext phi_kernel_context;
    op_with_kernel->BuildPhiKernelContext(
        runtime_context, dev_ctx, &phi_kernel_context);
    (*new_op_func_node.phi_kernel_)(&phi_kernel_context);
  }

169 170 171 172 173 174 175
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
  if (op_type == kMemcpyD2H) {
    dev_ctx->Wait();
  }
#endif
176 177 178 179 180 181 182 183 184 185
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

199 200 201 202 203 204 205
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
206
#ifdef PADDLE_WITH_MKLDNN
207

L
Leo Chen 已提交
208 209 210
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
211
    VLOG(4) << "Match special case(Filter && fetch_v2) " << var_name;
L
Leo Chen 已提交
212 213
    out_layout = framework::DataLayout::kNCHW;
  }
214 215 216 217 218 219 220 221 222 223 224 225 226 227

  if (in_layout == framework::DataLayout::MKLDNN &&
      out_layout != framework::DataLayout::MKLDNN) {
    auto target_layout = phi::OneDNNContext::tls().get_cur_paddle_data_layout();
    VLOG(4) << "TransDataLayoutFromMKLDNN: " << in_layout << "->"
            << target_layout;

    if (out_layout == DataLayout::kNCHW &&
        var_name == framework::GradVarName("Filter")) {
      VLOG(4) << "Match special case(Filter) " << var_name;
      target_layout = out_layout;
    }
    out_layout = target_layout;
  }
L
Leo Chen 已提交
228 229
#endif

230
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
231 232 233 234 235
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
236
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
237 238 239 240
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
241

L
Leo Chen 已提交
242
  auto* ptr = local_scope->Var(*new_var_name);
243
  auto var_type = local_scope->FindVar(var_name)->Type();
244
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
245 246 247
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
248
  var_scope->AddVar(*new_var_name, nullptr);
249 250 251 252

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
253 254
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
255

256
  // 3. Create transfer_layout_op
257 258 259 260 261
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

262
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
263 264 265 266
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
267
                             out_layout);
268 269 270 271 272 273 274
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
275
                                            framework::VariableScope* var_scope,
276 277
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
278 279 280 281
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
282
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
283 284 285 286
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
287

L
Leo Chen 已提交
288
  auto* ptr = local_scope->Var(*new_var_name);
289
  auto var_type = local_scope->FindVar(var_name)->Type();
290
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
291

292 293 294
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
295
  var_scope->AddVar(*new_var_name, nullptr);
296 297 298 299 300 301 302 303 304 305

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

306
  // 3. Create transfer_dtype_op
307 308 309 310 311
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

312 313 314 315 316 317
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
318 319 320 321 322 323 324 325 326 327
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
328 329 330
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

331 332
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
333 334 335 336
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
337

L
Leo Chen 已提交
338
  auto* ptr = local_scope->Var(*new_var_name);
339
  auto var_type = local_scope->FindVar(var_name)->Type();
340
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
341 342 343
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
344
  var_scope->AddVar(*new_var_name, nullptr);
345 346 347 348 349

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

350
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
351 352
  std::string op_type;
  AttributeMap attr_map;
353 354
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
355 356 357 358 359 360 361 362
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
363
                         : platform::is_ipu_place(dst_place) ? 3
364 365 366 367 368 369 370 371 372 373 374 375 376 377
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

378 379 380 381
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

382 383 384 385 386 387
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
388 389 390 391 392 393
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
394
                        VariableValueMap* outs_map_temp,
395 396
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
397 398
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
399 400 401
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

402
  auto op_base = op_func_node->operator_base_.get();
403 404 405 406
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
407 408

  VariableNameMap new_ins(op_base->Inputs());
409
  VariableNameMap new_outs(op_base->Outputs());
410 411 412
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
413 414 415
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
416 417
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
418 419 420 421 422
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

423
  bool transfered = false;
424
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
425
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
426 427 428
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

429 430
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
431
      auto var_name = new_ins[var_name_item.first].at(i);
432
      const Tensor* tensor_in;
L
Leo Chen 已提交
433 434 435
      std::string new_var_name;
      bool is_transferred = false;

436
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
437 438
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
439 440 441
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
442 443 444
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
445
        continue;
446
      }
L
Leo Chen 已提交
447
      // special case
448
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
466 467 468 469 470 471 472
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
489 490
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
491
        // apply data transform
492 493 494 495 496 497 498 499
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
500 501 502
      }

      if (is_transferred) {
503
        transfered = true;
504 505 506
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
507
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
508
        new_ins[var_name_item.first][i] = new_var_name;
509 510 511 512 513 514 515
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
516 517
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
518 519 520 521 522 523 524 525 526
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

542 543
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
544 545 546
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
547
  }
548 549 550
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

551 552 553 554 555 556 557
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
558
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
591
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
592 593 594 595 596 597
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
598
      auto* var = local_scope->FindVar(orig_var_name);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
615
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
616 617 618 619 620 621 622 623 624 625 626 627 628 629
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
630 631 632 633 634 635
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
636 637 638 639
    }
  }
}

640 641 642
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle