allocator_facade.cc 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
18
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
20
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
21
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
22
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/memory/allocation/retry_allocator.h"
24
#include "paddle/fluid/memory/allocation/stat_allocator.h"
25
#include "paddle/fluid/platform/device_context.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/core/macros.h"
29

30
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
31
#include <shared_mutex>
32

33
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
34
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
36
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
37
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
38
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
39
#include "paddle/phi/backends/gpu/gpu_context.h"
40 41

#ifdef PADDLE_WITH_CUDA
42
#include "paddle/phi/backends/gpu/cuda/cuda_graph.h"
43
#endif
44

45 46 47 48 49
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
50
#endif
51

52
#ifdef PADDLE_WITH_XPU
53 54
#include "paddle/fluid/memory/allocation/stream_safe_xpu_allocator.h"
#include "paddle/fluid/memory/allocation/xpu_allocator.h"
55
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
56
#include "paddle/phi/backends/xpu/xpu_context.h"
57
#endif
58

J
jianghaicheng 已提交
59 60 61 62
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

63 64 65 66
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif
67
#include "paddle/fluid/platform/flags.h"
68

Z
Zeng Jinle 已提交
69
PADDLE_DEFINE_EXPORTED_int64(
70 71
    gpu_allocator_retry_time,
    10000,
S
sneaxiy 已提交
72 73 74
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
75
PADDLE_DEFINE_EXPORTED_bool(
76 77
    use_system_allocator,
    false,
Z
Zeng Jinle 已提交
78 79
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
80

81 82
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth,
                            false,
83 84
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

85 86 87
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
88 89
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator,
                            true,
90 91
                            "Enable StreamSafeCUDAAllocator");

92 93
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory,
                            false,
94 95 96 97
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

98 99
PHI_DECLARE_string(allocator_strategy);
PHI_DECLARE_uint64(auto_growth_chunk_size_in_mb);
100

101 102 103 104
namespace paddle {
namespace memory {
namespace allocation {

105 106 107 108 109 110 111 112
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
113
                      DecoratedAllocationPtr underlying_allocation)
114 115 116 117
        : Allocation(underlying_allocation->ptr(),
                     underlying_allocation->base_ptr(),
                     underlying_allocation->size(),
                     underlying_allocation->place()),
118 119 120 121 122
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
123
    DecoratedAllocationPtr underlying_allocation_;
124 125 126 127 128 129
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
130
  ~CUDAGraphAllocator() {}
131

132 133 134 135 136 137
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
138
  phi::Allocation* AllocateImpl(size_t size) {
139
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
140 141 142
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
143 144
  }

145
  void FreeImpl(phi::Allocation* allocation) {
146 147 148 149 150 151 152 153 154
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

155 156
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
157
  return UNLIKELY(phi::backends::gpu::CUDAGraph::IsThisThreadCapturing());
158 159 160 161 162
#else
  return false;
#endif
}

Y
Yu Yang 已提交
163 164
class AllocatorFacadePrivate {
 public:
165 166
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

167 168 169 170 171
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif
172 173 174 175 176
#ifdef PADDLE_WITH_XPU
  using XPUAllocatorMap =
      std::map<platform::XPUPlace,
               std::map<XPUStream, std::shared_ptr<Allocator>>>;
#endif
177

178 179
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
180 181
    is_stream_safe_cuda_allocator_used_ = false;

182
    switch (strategy_) {
183 184
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
185 186 187 188 189
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
190
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
191
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
192 193 194
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
195
#endif
196 197 198 199 200
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
201
#ifdef PADDLE_WITH_CUSTOM_DEVICE
202
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
203 204
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
205
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
206 207 208 209 210
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
211
#endif
Z
Zeng Jinle 已提交
212 213
        break;
      }
214 215 216

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
217 218
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
219 220 221 222 223
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

224 225 226 227 228 229 230 231
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
232
        // manner in GetAllocator function with 'create_if_not_found = true'.
233 234 235 236
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
237
        if (FLAGS_use_stream_safe_cuda_allocator) {
238 239 240 241
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
242
        }
243

244 245
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
246
#ifdef PADDLE_WITH_XPU
247
        allow_free_idle_chunk_ = allow_free_idle_chunk;
248
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
249 250 251 252 253 254
          InitAutoGrowthXPUAllocator(platform::XPUPlace(dev_id),
                                     allow_free_idle_chunk_);
        }
        if (FLAGS_use_stream_safe_cuda_allocator) {
          WrapStreamSafeXPUAllocatorForDefault();
          is_stream_safe_cuda_allocator_used_ = true;
255
        }
256

J
jianghaicheng 已提交
257 258 259 260 261
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
262
#endif
263
#ifdef PADDLE_WITH_CUSTOM_DEVICE
264
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
265 266
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
267
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
268 269 270 271 272
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
273
#endif
Z
Zeng Jinle 已提交
274 275
        break;
      }
276

277 278
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
279 280 281 282 283
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
284 285 286 287 288
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
289
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
290
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
291 292 293 294 295 296 297
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
        break;
      }

Z
Zeng Jinle 已提交
298
      default: {
299
        PADDLE_THROW(platform::errors::InvalidArgument(
300
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
301
      }
Y
Yu Yang 已提交
302
    }
Z
Zeng Jinle 已提交
303
    InitZeroSizeAllocators();
304
    InitSystemAllocators();
305 306 307 308 309

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

310 311
    WrapStatAllocator();

312
    CheckAllocThreadSafe();
313 314

#ifdef PADDLE_WITH_CUDA
315 316 317
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
318 319 320
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
321 322 323 324
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
325
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
326
            << " " << place << " " << size;
327 328
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
329
                                                          : GetAllocatorMap())
330
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
331
    auto iter = allocators.find(place);
332 333
    PADDLE_ENFORCE_NE(iter,
                      allocators.end(),
334 335
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
336
    return iter->second;
337 338
  }

339
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
340 341 342
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

343 344 345 346 347
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

348
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
349
  bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) {
350 351 352 353 354 355 356 357 358
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

359
  const std::shared_ptr<Allocator>& GetAllocator(
360 361
      const platform::CUDAPlace& place,
      gpuStream_t stream,
362
      bool create_if_not_found = false) {
363 364 365 366 367
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
368 369 370
    }

    /* shared_lock_guard */ {
371 372 373
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
374 375
        return cuda_allocators_[place][stream];
      } else {
376 377
        PADDLE_ENFORCE_NE(create_if_not_found,
                          false,
378 379 380
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
381 382
                              stream,
                              place));
383 384 385
      }
    }

386
    /* unique_lock_guard */ {
387 388 389 390
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
391
    }
392 393
  }

394 395 396 397
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
398 399
        iter,
        default_stream_safe_cuda_allocators_.end(),
400 401 402 403 404
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

405
  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const {
406 407 408 409 410
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

411
  void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) {
412 413
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
414

415
    PADDLE_ENFORCE_EQ(
416 417
        allocator->GetDefaultStream(),
        nullptr,
418 419 420
        platform::errors::Unavailable(
            "The default stream for StreamSafeCUDAAllocator(%p) in %s has been "
            "set to %p, not allow to change it to %p.",
421 422 423 424
            allocator.get(),
            place,
            allocator->GetDefaultStream(),
            stream));
425

426 427 428 429 430 431
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

432
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
433
                    gpuStream_t stream) {
434 435 436 437 438 439
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
440
    }
441 442
  }

443
  gpuStream_t GetStream(
444
      const std::shared_ptr<phi::Allocation>& allocation) const {
445 446 447 448 449 450 451 452 453 454 455
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
456 457 458
  }
#endif

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
#ifdef PADDLE_WITH_XPU
  bool HasXPUAllocator(const platform::XPUPlace& place, XPUStream stream) {
    auto it = xpu_allocators_.find(place);
    if (it == xpu_allocators_.end()) {
      return false;
    }
    const std::map<XPUStream, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::XPUPlace& place,
      XPUStream stream,
      bool create_if_not_found = false) {
    if (stream == GetDefaultStream(place)) {
      VLOG(7) << "Get Allocator by passing in a default stream";
      return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
    }

    /* shared_lock_guard */ {
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          xpu_allocator_mutex_);
      if (LIKELY(HasXPUAllocator(place, stream))) {
        return xpu_allocators_[place][stream];
      } else {
        PADDLE_ENFORCE_NE(create_if_not_found,
                          false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream,
                              place));
      }
    }

    /* unique_lock_guard */ {
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          xpu_allocator_mutex_);
      InitStreamSafeXPUAllocator(place, stream);
      return xpu_allocators_[place][stream];
    }
  }

  const std::shared_ptr<StreamSafeXPUAllocator>
  GetDefaultStreamSafeXPUAllocator(const platform::XPUPlace& place) const {
    const auto iter = default_stream_safe_xpu_allocators_.find(place);
    PADDLE_ENFORCE_NE(
        iter,
        default_stream_safe_xpu_allocators_.end(),
        platform::errors::NotFound(
            "No StreamSafeXPUAllocator found for the place, %s", place));
    return iter->second;
  }

  XPUStream GetDefaultStream(const platform::XPUPlace& place) const {
    const std::shared_ptr<StreamSafeXPUAllocator>& allocator =
        GetDefaultStreamSafeXPUAllocator(place);
    return allocator->GetDefaultStream();
  }

  void SetDefaultStream(const platform::XPUPlace& place, XPUStream stream) {
    const std::shared_ptr<StreamSafeXPUAllocator>& allocator =
        GetDefaultStreamSafeXPUAllocator(place);

    PADDLE_ENFORCE_EQ(
        allocator->GetDefaultStream(),
        nullptr,
        platform::errors::Unavailable(
            "The default stream for StreamSafeXPUAllocator(%p) in %s has been "
            "set to %p, not allow to change it to %p.",
            allocator.get(),
            place,
            allocator->GetDefaultStream(),
            stream));

    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeXPUAllocator(" << allocator.get() << ") in "
            << place;
  }

  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
                    XPUStream stream) {
    std::shared_ptr<StreamSafeXPUAllocation> stream_safe_xpu_allocation =
        std::dynamic_pointer_cast<StreamSafeXPUAllocation>(allocation);
    if (stream_safe_xpu_allocation != nullptr) {
      stream_safe_xpu_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeXPUAllocation";
    }
  }

  XPUStream GetStream(
      const std::shared_ptr<phi::Allocation>& allocation) const {
    const std::shared_ptr<StreamSafeXPUAllocation> stream_safe_xpu_allocation =
        std::dynamic_pointer_cast<StreamSafeXPUAllocation>(allocation);
    if (stream_safe_xpu_allocation != nullptr) {
      return stream_safe_xpu_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeXPUAllocation";
    return static_cast<phi::XPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
  }
#endif

567 568 569 570 571 572 573
 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
574
    phi::Allocation* AllocateImpl(size_t size) override {
575 576
      return new Allocation(nullptr, 0, place_);
    }
577
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
578 579 580 581 582

   private:
    platform::Place place_;
  };

583
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
584

585
  void InitNaiveBestFitCPUAllocator() {
586 587 588 589 590 591 592
#if defined(__APPLE__) && defined(__arm64__)
    // NOTE(wuweilong): It is more efficient to use CPUAllocator directly,
    // but it wll cause some problem in Mac OS m1 chip, so we use
    // NaiveBestFitAllocator instead.
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
#else
593
    allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
594
#endif
Y
Yu Yang 已提交
595 596
  }

597
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
598 599 600
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
601 602
  }

603 604 605 606 607 608 609 610
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
611 612
          strategy_,
          AllocatorStrategy::kAutoGrowth,
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
628 629
            "Or you must use the gpu device that supports managed memory.",
            p.device));
630 631 632 633 634 635
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

636 637
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
638 639
        strategy_,
        AllocatorStrategy::kAutoGrowth,
640 641 642 643
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
644 645 646
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
647 648 649
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
650
      WrapStatAllocator(p, stream);
651 652 653 654
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
655 656 657
    auto chunk_size = FLAGS_auto_growth_chunk_size_in_mb << 20;
    VLOG(4) << "FLAGS_auto_growth_chunk_size_in_mb is "
            << FLAGS_auto_growth_chunk_size_in_mb;
658
#if defined(PADDLE_WITH_HIP)
659
    auto cuda_allocator = CreateCUDAAllocator(p);
660
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
661 662 663 664
        cuda_allocator,
        platform::GpuMinChunkSize(),
        chunk_size,
        allow_free_idle_chunk_);
665 666 667 668 669 670 671
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
672
      PADDLE_ENFORCE_GPU_SUCCESS(
673 674
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

675
      PADDLE_ENFORCE_GPU_SUCCESS(
676
          paddle::platform::dynload::cuDeviceGetAttribute(
677 678
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
679 680 681 682 683 684 685 686 687 688 689
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
690
      auto cuda_allocator = CreateCUDAAllocator(p);
691 692
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
693 694
              cuda_allocator,
              platform::GpuMinChunkSize(),
695
              /*chunk_size=*/chunk_size,
696 697 698
              allow_free_idle_chunk_);
    }
#else
699
    auto cuda_allocator = CreateCUDAAllocator(p);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
733
        underlying_allocator, alignment, chunk_size, allow_free_idle_chunk_);
734 735
#endif
#endif
736 737
  }

738
  // NOTE(Ruibiao): Old single-stream version, will be removed later
739 740
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
741 742 743
    auto chunk_size = FLAGS_auto_growth_chunk_size_in_mb << 20;
    VLOG(4) << "FLAGS_auto_growth_chunk_size_in_mb is "
            << FLAGS_auto_growth_chunk_size_in_mb;
744
#if defined(PADDLE_WITH_HIP)
745
    auto cuda_allocator = CreateCUDAAllocator(p);
746
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
747 748
        cuda_allocator,
        platform::GpuMinChunkSize(),
749
        /*chunk_size=*/chunk_size,
750
        allow_free_idle_chunk);
751 752 753 754 755 756 757
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
758
      PADDLE_ENFORCE_GPU_SUCCESS(
759 760
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

761
      PADDLE_ENFORCE_GPU_SUCCESS(
762
          paddle::platform::dynload::cuDeviceGetAttribute(
763 764
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
765 766 767 768 769 770 771 772 773 774 775
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
776
      auto cuda_allocator = CreateCUDAAllocator(p);
777
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
778 779
          cuda_allocator,
          platform::GpuMinChunkSize(),
780
          /*chunk_size=*/chunk_size,
781
          allow_free_idle_chunk);
782 783 784
    }

#else
785
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
817
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
818
        underlying_allocator, alignment, chunk_size, allow_free_idle_chunk);
819 820
#endif
#endif
S
sneaxiy 已提交
821
  }
822 823 824 825 826 827

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
828 829
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
830 831 832
        allocator,
        p,
        stream,
833
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
834 835
  }

836 837 838 839 840 841
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
842 843
                pair.second,
                place,
844
                /* default_stream = */ nullptr,
845 846 847 848 849 850 851 852 853 854 855 856 857
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

858 859
  void WrapCUDARetryAllocator(platform::CUDAPlace p,
                              gpuStream_t stream,
860 861
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
862 863
        retry_time,
        0,
864 865
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
866
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
867 868 869
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

870 871 872 873 874
  void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

875 876 877 878 879 880 881 882 883
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

884 885 886
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
887 888
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(),
                          true,
889 890 891 892 893
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
894
#endif
S
sneaxiy 已提交
895

896 897 898 899
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

  // Create a new XPUAllocator or XPUManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateXPUAllocator(platform::XPUPlace p) {
    return std::make_shared<XPUAllocator>(p);
  }

  void InitStreamSafeXPUAllocator(platform::XPUPlace p, XPUStream stream) {
    PADDLE_ENFORCE_EQ(
        strategy_,
        AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeXPUAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
    if (LIKELY(!HasXPUAllocator(p, stream))) {
      VLOG(8) << "Init XPU allocator for stream " << stream << " in place "
              << p;
      InitAutoGrowthXPUAllocator(p, stream);

      WrapStreamSafeXPUAllocator(p, stream);

      WrapXPURetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
      WrapStatAllocator(p, stream);
    }
  }

  void InitAutoGrowthXPUAllocator(platform::XPUPlace p, XPUStream stream) {
    auto chunk_size = FLAGS_auto_growth_chunk_size_in_mb << 6;
    VLOG(4) << "FLAGS_auto_growth_chunk_size_in_mb is "
            << FLAGS_auto_growth_chunk_size_in_mb;
    auto xpu_allocator = CreateXPUAllocator(p);
    auto alignment = platform::XPUMinChunkSize();

    std::shared_ptr<Allocator> underlying_allocator{nullptr};

    VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
    underlying_allocator = xpu_allocator;

    xpu_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, chunk_size, allow_free_idle_chunk_);
  }

  void InitAutoGrowthXPUAllocator(platform::XPUPlace p,
                                  bool allow_free_idle_chunk) {
    auto chunk_size = FLAGS_auto_growth_chunk_size_in_mb << 6;
    VLOG(4) << "FLAGS_auto_growth_chunk_size_in_mb is "
            << FLAGS_auto_growth_chunk_size_in_mb;
    auto xpu_allocator = CreateXPUAllocator(p);
    auto alignment = platform::XPUMinChunkSize();

    std::shared_ptr<Allocator> underlying_allocator{nullptr};

    VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
    underlying_allocator = xpu_allocator;

    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, chunk_size, allow_free_idle_chunk);
  }

  void WrapStreamSafeXPUAllocator(platform::XPUPlace p, XPUStream stream) {
    std::shared_ptr<Allocator>& allocator = xpu_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeXPUAllocator>(allocator, p, stream);
  }

  void WrapStreamSafeXPUAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_xpu_place(place)) {
        std::shared_ptr<StreamSafeXPUAllocator>&& allocator =
            std::make_shared<StreamSafeXPUAllocator>(
                pair.second,
                place,
                /* default_stream = */ nullptr);
        pair.second = allocator;
        default_stream_safe_xpu_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeXPUAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

  void WrapXPURetryAllocator(platform::XPUPlace p,
                             XPUStream stream,
                             size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time,
        0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
    std::shared_ptr<Allocator>& allocator = xpu_allocators_[p][stream];
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  void WrapStatAllocator(platform::XPUPlace p, XPUStream stream) {
    std::shared_ptr<Allocator>& allocator = xpu_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

998 999
#endif

J
jianghaicheng 已提交
1000 1001 1002 1003 1004 1005
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

1006 1007 1008 1009 1010 1011 1012
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
1013
    auto chunk_size = FLAGS_auto_growth_chunk_size_in_mb << 20;
1014 1015 1016
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
1017 1018
        custom_allocator,
        phi::DeviceManager::GetMinChunkSize(p),
1019
        /*chunk_size=*/chunk_size,
1020 1021 1022 1023
        allow_free_idle_chunk);
  }
#endif

1024 1025 1026 1027 1028 1029 1030
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
1031
      system_allocators_[p] = CreateXPUAllocator(p);
Z
Zeng Jinle 已提交
1032
    }
1033
#endif
J
jianghaicheng 已提交
1034 1035 1036 1037 1038 1039 1040
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
1041 1042 1043
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
1044
    int device_count = platform::GetGPUDeviceCount();
1045 1046
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
1047
      system_allocators_[p] = CreateCUDAAllocator(p);
1048
    }
F
fwenguang 已提交
1049
#endif
1050 1051 1052 1053
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
1054 1055
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
1056 1057 1058 1059
        platform::CustomPlace p(dev_type, dev_id);
        system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
      }
    }
1060 1061
#endif
  }
Z
Zeng Jinle 已提交
1062 1063

  void InitZeroSizeAllocators() {
1064
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
1065 1066
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
1067
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1068
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
1069 1070 1071 1072 1073
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
1074 1075 1076 1077 1078 1079
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
1080 1081 1082 1083 1084 1085
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
1086
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1087
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1088 1089
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
1090 1091
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
1092 1093 1094 1095
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
1096 1097 1098

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
1099 1100
    }
  }
Z
Zeng Jinle 已提交
1101

1102 1103
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
1104 1105
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(),
                        true,
1106 1107
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
1108
    }
1109
  }
1110

1111 1112 1113 1114
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
1115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1116
    if (is_stream_safe_cuda_allocator_used_) {
1117 1118 1119
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
1120 1121 1122
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
1123
    PADDLE_ENFORCE_GT(
1124 1125
        retry_time,
        0,
1126 1127
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
1128
    for (auto& pair : allocators_) {
1129 1130
      if (platform::is_gpu_place(pair.first) ||
          platform::is_xpu_place(pair.first)) {
1131 1132 1133 1134 1135
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

1136 1137
  void WrapStatAllocator() {
    for (auto& pair : allocators_) {
1138 1139 1140 1141 1142 1143 1144
      // Now memory stats is only supported for CPU and GPU
      const platform::Place& place = pair.first;
      if (platform::is_cpu_place(place) ||
          platform::is_cuda_pinned_place(place) ||
          platform::is_gpu_place(place)) {
        pair.second = std::make_shared<StatAllocator>(pair.second);
      }
1145 1146 1147
    }
  }

1148 1149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
1150 1151
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
1152
  CUDAAllocatorMap cuda_allocators_;
1153
  std::shared_timed_mutex cuda_allocator_mutex_;
1154
#endif
1155 1156 1157 1158 1159 1160 1161 1162 1163

#ifdef PADDLE_WITH_XPU
  // a standalone XPU allocator to support multi-stream GC in new executor
  std::map<platform::Place, std::shared_ptr<StreamSafeXPUAllocator>>
      default_stream_safe_xpu_allocators_;
  XPUAllocatorMap xpu_allocators_;
  std::shared_timed_mutex xpu_allocator_mutex_;
#endif

1164
  AllocatorStrategy strategy_;
1165
  AllocatorMap allocators_;
1166 1167
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
1168
  bool allow_free_idle_chunk_;
1169
  bool is_stream_safe_cuda_allocator_used_;
1170
};
1171 1172 1173 1174
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
1175
// Pimpl. Make interface clean.
1176
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
1177 1178 1179
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
1180 1181

AllocatorFacade& AllocatorFacade::Instance() {
1182 1183 1184 1185 1186 1187
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
1188
  if (UNLIKELY(IsCUDAGraphCapturing())) {
1189
    auto id = phi::backends::gpu::CUDAGraph::CapturingPoolID();
1190 1191
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
1192 1193
        iter,
        cuda_graph_map_.end(),
1194 1195 1196 1197 1198 1199 1200
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
1201 1202
}

1203 1204
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
1205 1206
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
1207 1208
}

1209
void* AllocatorFacade::GetBasePtr(
1210
    const std::shared_ptr<phi::Allocation>& allocation) {
1211 1212
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1213 1214 1215 1216
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
1217 1218
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()),
                    true,
1219 1220 1221 1222
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
1223
  return GetPrivate()->GetBasePtr(allocation);
1224 1225
}

1226 1227
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
1228
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
1229 1230
}

1231
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
1232
    const platform::Place& place, size_t size) {
1233
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
1234 1235
}

1236 1237
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
1238
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
1239 1240
}

W
Wilber 已提交
1241
uint64_t AllocatorFacade::Release(const platform::Place& place) {
1242 1243
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
1244 1245 1246
      ->Release(place);
}

1247 1248
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
1249
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
1250 1251
}

1252 1253
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size,
1254
                                     const phi::Stream& stream) {
1255
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1256 1257 1258 1259 1260
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
1261

1262 1263 1264
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1265
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1266 1267
        ->Allocate(size);
  } else {
1268
    return m->GetAllocator(p, size)->Allocate(size);
1269
  }
1270
#elif defined(PADDLE_WITH_XPU)
1271
  return GetAllocator(place)->Allocate(size);
1272
#else
J
jjyaoao 已提交
1273 1274
  PADDLE_THROW(
      platform::errors::PreconditionNotMet("Not compiled with GPU or XPU."));
1275 1276 1277
#endif
}

1278 1279 1280
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1281
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1282 1283 1284 1285
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1286
#endif
1287 1288
}

1289 1290 1291 1292
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1293
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1294
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
1295
                                  gpuStream_t stream) {
1296 1297 1298 1299 1300 1301 1302
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1303 1304
}

1305
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1306
                                   gpuStream_t stream) {
1307
  GetPrivate()->RecordStream(allocation, stream);
1308 1309
}

1310
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
1311
    const platform::Place& place, gpuStream_t stream) {
1312 1313 1314 1315 1316
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1317
  }
1318 1319

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
1320 1321
    return m->GetAllocator(place,
                           stream,
1322 1323 1324
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1325 1326
}

1327
gpuStream_t AllocatorFacade::GetStream(
1328
    const std::shared_ptr<phi::Allocation>& allocation) const {
1329
  return GetPrivate()->GetStream(allocation);
1330 1331
}

1332
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
1333
                                       gpuStream_t stream) {
1334 1335
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1336 1337 1338
  }
}

1339
#ifdef PADDLE_WITH_CUDA
1340
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(int64_t id) {
1341 1342
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1343 1344 1345 1346 1347 1348
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
1349 1350 1351 1352 1353 1354 1355 1356 1357
  auto& ref_cnt = cuda_graph_ref_cnt_[id];
  if (allocator.get() == nullptr) {
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    VLOG(10) << "Create memory pool for CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Use created memory pool for CUDA Graph with memory ID " << id;
  }
  ++ref_cnt;
1358 1359
}

1360 1361
void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(int64_t id) {
  auto ref_cnt_iter = cuda_graph_ref_cnt_.find(id);
1362 1363
  PADDLE_ENFORCE_NE(ref_cnt_iter,
                    cuda_graph_ref_cnt_.end(),
1364
                    platform::errors::InvalidArgument(
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
                        "Cannot find CUDA Graph with memory ID = %d", id));
  auto& ref_cnt = ref_cnt_iter->second;
  --ref_cnt;
  if (ref_cnt == 0) {
    cuda_graph_map_.erase(id);
    cuda_graph_ref_cnt_.erase(ref_cnt_iter);
  } else {
    VLOG(10) << "Decrease memory pool ID " << id << " reference count to be "
             << ref_cnt;
  }
1375 1376
}
#endif
1377
#endif
1378 1379 1380 1381

UNUSED static std::shared_ptr<NaiveBestFitAllocator> unused_obj =
    std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());

1382 1383 1384
}  // namespace allocation
}  // namespace memory
}  // namespace paddle