allocator_facade.cc 43.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
25
#include "paddle/fluid/memory/allocation/stat_allocator.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/place.h"
28

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30
#include <shared_mutex>
31

32
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
33
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
35
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
36
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
38
#include "paddle/fluid/platform/device_context.h"
39
#include "paddle/phi/backends/gpu/gpu_context.h"
40 41

#ifdef PADDLE_WITH_CUDA
42
#include "paddle/phi/backends/gpu/cuda/cuda_graph.h"
43
#endif
44

45 46 47 48 49
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
50
#endif
51

52
#ifdef PADDLE_WITH_XPU
53
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
54
#endif
55 56 57 58

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
59

J
jianghaicheng 已提交
60 61 62 63
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
64 65 66 67
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

68 69 70 71 72
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
73
PADDLE_DEFINE_EXPORTED_int64(
74 75
    gpu_allocator_retry_time,
    10000,
S
sneaxiy 已提交
76 77 78
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
79
PADDLE_DEFINE_EXPORTED_bool(
80 81
    use_system_allocator,
    false,
Z
Zeng Jinle 已提交
82 83
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
84

85 86
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth,
                            false,
87 88
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

89 90 91
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
92 93
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator,
                            true,
94 95
                            "Enable StreamSafeCUDAAllocator");

96 97
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory,
                            false,
98 99 100 101
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

102 103
DECLARE_string(allocator_strategy);

104 105 106 107
namespace paddle {
namespace memory {
namespace allocation {

108 109 110 111 112 113 114 115
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
116
                      DecoratedAllocationPtr underlying_allocation)
117 118 119 120
        : Allocation(underlying_allocation->ptr(),
                     underlying_allocation->base_ptr(),
                     underlying_allocation->size(),
                     underlying_allocation->place()),
121 122 123 124 125
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
126
    DecoratedAllocationPtr underlying_allocation_;
127 128 129 130 131 132
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
133 134
  ~CUDAGraphAllocator() { VLOG(10) << "CUDAGraphAllocator destructed"; }

135 136 137 138 139 140
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
141
  phi::Allocation* AllocateImpl(size_t size) {
142
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
143 144 145
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
146 147
  }

148
  void FreeImpl(phi::Allocation* allocation) {
149 150 151 152 153 154 155 156 157
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

158 159
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
160
  return UNLIKELY(phi::backends::gpu::CUDAGraph::IsThisThreadCapturing());
161 162 163 164 165
#else
  return false;
#endif
}

Y
Yu Yang 已提交
166 167
class AllocatorFacadePrivate {
 public:
168 169
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

170 171 172 173 174 175
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

176 177
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
178 179
    is_stream_safe_cuda_allocator_used_ = false;

180
    switch (strategy_) {
181 182
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
183 184 185 186 187
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
188
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
189
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
190 191 192
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
193
#endif
194 195 196 197 198
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
199 200 201 202
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
203
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
204 205 206 207 208
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
209 210
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
211
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
212 213
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
214
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
215 216 217 218 219
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
220
#endif
Z
Zeng Jinle 已提交
221 222
        break;
      }
223 224 225

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
226 227
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
228 229 230 231 232
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

233 234 235 236 237 238 239 240
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
241
        // manner in GetAllocator function with 'create_if_not_found = true'.
242 243 244 245
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
246
        if (FLAGS_use_stream_safe_cuda_allocator) {
247 248 249 250
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
251
        }
252

253 254
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
255 256 257 258 259 260
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
261 262 263 264
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
265 266 267 268 269
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
270 271 272 273 274
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
275 276
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
277
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
278 279
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
280
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
281 282 283 284 285
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
286
#endif
Z
Zeng Jinle 已提交
287 288
        break;
      }
289

290 291
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
292 293 294 295 296
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
297 298 299 300 301
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
302
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
303
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
304 305 306
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
307 308 309 310 311
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
312 313 314 315
#endif
        break;
      }

Z
Zeng Jinle 已提交
316
      default: {
317
        PADDLE_THROW(platform::errors::InvalidArgument(
318
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
319
      }
Y
Yu Yang 已提交
320
    }
Z
Zeng Jinle 已提交
321
    InitZeroSizeAllocators();
322
    InitSystemAllocators();
323 324 325 326 327

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

328 329
    WrapStatAllocator();

330
    CheckAllocThreadSafe();
331 332

#ifdef PADDLE_WITH_CUDA
333 334 335
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
336 337 338
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
339 340 341 342
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
343
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
344
            << " " << place << " " << size;
345 346
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
347
                                                          : GetAllocatorMap())
348
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
349
    auto iter = allocators.find(place);
350 351
    PADDLE_ENFORCE_NE(iter,
                      allocators.end(),
352 353
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
354
    return iter->second;
355 356
  }

357
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
358 359 360
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

361 362 363 364 365
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

366
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
367
  bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) {
368 369 370 371 372 373 374 375 376
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

377
  const std::shared_ptr<Allocator>& GetAllocator(
378 379
      const platform::CUDAPlace& place,
      gpuStream_t stream,
380
      bool create_if_not_found = false) {
381 382 383 384 385
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
386 387 388
    }

    /* shared_lock_guard */ {
389 390 391
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
392 393
        return cuda_allocators_[place][stream];
      } else {
394 395
        PADDLE_ENFORCE_NE(create_if_not_found,
                          false,
396 397 398
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
399 400
                              stream,
                              place));
401 402 403
      }
    }

404
    /* unique_lock_guard */ {
405 406 407 408
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
409
    }
410 411
  }

412 413 414 415
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
416 417
        iter,
        default_stream_safe_cuda_allocators_.end(),
418 419 420 421 422
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

423
  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const {
424 425 426 427 428
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

429
  void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) {
430 431
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
432

433
    PADDLE_ENFORCE_EQ(
434 435
        allocator->GetDefaultStream(),
        nullptr,
436 437 438
        platform::errors::Unavailable(
            "The default stream for StreamSafeCUDAAllocator(%p) in %s has been "
            "set to %p, not allow to change it to %p.",
439 440 441 442
            allocator.get(),
            place,
            allocator->GetDefaultStream(),
            stream));
443

444 445 446 447 448 449
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

450
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
451
                    gpuStream_t stream) {
452 453 454 455 456 457
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
458
    }
459 460
  }

461
  gpuStream_t GetStream(
462
      const std::shared_ptr<phi::Allocation>& allocation) const {
463 464 465 466 467 468 469 470 471 472 473
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
474 475 476 477 478 479 480 481 482 483
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
484
    phi::Allocation* AllocateImpl(size_t size) override {
485 486
      return new Allocation(nullptr, 0, place_);
    }
487
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
488 489 490 491 492

   private:
    platform::Place place_;
  };

493
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
494

495 496 497
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
498 499
  }

500
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
501 502 503
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
504 505
  }

506 507 508 509 510 511 512 513
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
514 515
          strategy_,
          AllocatorStrategy::kAutoGrowth,
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
531 532
            "Or you must use the gpu device that supports managed memory.",
            p.device));
533 534 535 536 537 538
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

539 540
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
541 542
        strategy_,
        AllocatorStrategy::kAutoGrowth,
543 544 545 546
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
547 548 549
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
550 551 552
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
553
      WrapStatAllocator(p, stream);
554 555 556 557 558
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
559
    auto cuda_allocator = CreateCUDAAllocator(p);
560
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
561
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
562 563 564 565 566 567 568
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
569
      PADDLE_ENFORCE_GPU_SUCCESS(
570 571
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

572
      PADDLE_ENFORCE_GPU_SUCCESS(
573
          paddle::platform::dynload::cuDeviceGetAttribute(
574 575
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
576 577 578 579 580 581 582 583 584 585 586
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
587
      auto cuda_allocator = CreateCUDAAllocator(p);
588 589
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
590 591
              cuda_allocator,
              platform::GpuMinChunkSize(),
592
              /*chunk_size=*/0,
593 594 595
              allow_free_idle_chunk_);
    }
#else
596
    auto cuda_allocator = CreateCUDAAllocator(p);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
633 634
  }

635
  // NOTE(Ruibiao): Old single-stream version, will be removed later
636 637
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
638
#if defined(PADDLE_WITH_HIP)
639
    auto cuda_allocator = CreateCUDAAllocator(p);
640
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
641 642 643 644
        cuda_allocator,
        platform::GpuMinChunkSize(),
        /*chunk_size=*/0,
        allow_free_idle_chunk);
645 646 647 648 649 650 651
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
652
      PADDLE_ENFORCE_GPU_SUCCESS(
653 654
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

655
      PADDLE_ENFORCE_GPU_SUCCESS(
656
          paddle::platform::dynload::cuDeviceGetAttribute(
657 658
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
659 660 661 662 663 664 665 666 667 668 669
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
670
      auto cuda_allocator = CreateCUDAAllocator(p);
671
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
672 673 674 675
          cuda_allocator,
          platform::GpuMinChunkSize(),
          /*chunk_size=*/0,
          allow_free_idle_chunk);
676 677 678
    }

#else
679
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
711
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
712
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
713 714
#endif
#endif
S
sneaxiy 已提交
715
  }
716 717 718 719 720 721

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
722 723
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
724 725 726
        allocator,
        p,
        stream,
727
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
728 729
  }

730 731 732 733 734 735
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
736 737
                pair.second,
                place,
738
                /* default_stream = */ nullptr,
739 740 741 742 743 744 745 746 747 748 749 750 751
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

752 753
  void WrapCUDARetryAllocator(platform::CUDAPlace p,
                              gpuStream_t stream,
754 755
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
756 757
        retry_time,
        0,
758 759
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
760
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
761 762 763
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

764 765 766 767 768
  void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

769 770 771 772 773 774 775 776 777
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

778 779 780
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
781 782
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(),
                          true,
783 784 785 786 787
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
788
#endif
S
sneaxiy 已提交
789

790 791 792 793 794 795
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
796 797 798 799 800 801
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
802 803 804 805 806 807
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

808 809 810 811
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
812 813 814 815 816

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
817 818
#endif

819 820 821 822 823 824 825 826 827 828
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
829 830
        custom_allocator,
        phi::DeviceManager::GetMinChunkSize(p),
831
        /*chunk_size=*/0,
832 833 834 835
        allow_free_idle_chunk);
  }
#endif

836 837 838 839 840 841 842 843
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
844
    }
845
#endif
J
jianghaicheng 已提交
846 847 848 849 850 851 852
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
853 854 855
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
856
    int device_count = platform::GetGPUDeviceCount();
857 858
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
859
      system_allocators_[p] = CreateCUDAAllocator(p);
860
    }
F
fwenguang 已提交
861 862 863 864
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
865
      platform::MLUPlace p(i);
F
fwenguang 已提交
866 867
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
868 869 870 871 872
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
873 874
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
875 876 877 878
        platform::CustomPlace p(dev_type, dev_id);
        system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
      }
    }
879 880
#endif
  }
Z
Zeng Jinle 已提交
881 882

  void InitZeroSizeAllocators() {
883
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
884 885
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
886
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
887
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
888 889 890 891 892
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
893 894 895 896 897 898
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
899 900 901 902 903 904
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
905 906 907 908 909 910
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
911 912 913 914 915 916
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
917
#ifdef PADDLE_WITH_CUSTOM_DEVICE
918
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
919 920
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
921 922
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
923 924 925 926
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
927 928 929

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
930 931
    }
  }
Z
Zeng Jinle 已提交
932

933 934
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
935 936
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(),
                        true,
937 938
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
939
    }
940
  }
941

942 943 944 945
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
946
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
947
    if (is_stream_safe_cuda_allocator_used_) {
948 949 950
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
951 952 953
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
954
    PADDLE_ENFORCE_GT(
955 956
        retry_time,
        0,
957 958
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
959 960 961 962 963 964 965
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

966 967
  void WrapStatAllocator() {
    for (auto& pair : allocators_) {
968 969 970 971 972 973 974
      // Now memory stats is only supported for CPU and GPU
      const platform::Place& place = pair.first;
      if (platform::is_cpu_place(place) ||
          platform::is_cuda_pinned_place(place) ||
          platform::is_gpu_place(place)) {
        pair.second = std::make_shared<StatAllocator>(pair.second);
      }
975 976 977
    }
  }

978 979
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
980 981
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
982
  CUDAAllocatorMap cuda_allocators_;
983
  std::shared_timed_mutex cuda_allocator_mutex_;
984 985
#endif
  AllocatorStrategy strategy_;
986
  AllocatorMap allocators_;
987 988
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
989
  bool allow_free_idle_chunk_;
990
  bool is_stream_safe_cuda_allocator_used_;
991
};
992 993 994 995
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
996
// Pimpl. Make interface clean.
997
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
998 999 1000
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
1001 1002

AllocatorFacade& AllocatorFacade::Instance() {
1003 1004 1005 1006 1007 1008
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
1009
  if (UNLIKELY(IsCUDAGraphCapturing())) {
1010
    auto id = phi::backends::gpu::CUDAGraph::CapturingPoolID();
1011 1012
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
1013 1014
        iter,
        cuda_graph_map_.end(),
1015 1016 1017 1018 1019 1020 1021
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
1022 1023
}

1024 1025
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
1026 1027
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
1028 1029
}

1030
void* AllocatorFacade::GetBasePtr(
1031
    const std::shared_ptr<phi::Allocation>& allocation) {
1032 1033
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1034 1035 1036 1037
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
1038 1039
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()),
                    true,
1040 1041 1042 1043
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
1044
  return GetPrivate()->GetBasePtr(allocation);
1045 1046
}

1047 1048
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
1049
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
1050 1051
}

1052
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
1053
    const platform::Place& place, size_t size) {
1054
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
1055 1056
}

1057 1058
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
1059
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
1060 1061
}

W
Wilber 已提交
1062
uint64_t AllocatorFacade::Release(const platform::Place& place) {
1063 1064
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
1065 1066 1067
      ->Release(place);
}

1068 1069
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
1070
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
1071 1072
}

1073 1074
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size,
1075
                                     const phi::Stream& stream) {
1076
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1077 1078 1079 1080 1081
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
1082

1083 1084 1085
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1086
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1087 1088
        ->Allocate(size);
  } else {
1089
    return m->GetAllocator(p, size)->Allocate(size);
1090
  }
1091
#elif defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_ASCEND_CL)
1092
  return GetAllocator(place)->Allocate(size);
1093
#else
1094 1095
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "Not compiled with GPU or XPU or NPU."));
1096 1097 1098
#endif
}

1099 1100 1101
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1102
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1103 1104 1105 1106
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1107
#endif
1108 1109
}

1110 1111 1112 1113
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1114
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1115
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
1116
                                  gpuStream_t stream) {
1117 1118 1119 1120 1121 1122 1123
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1124 1125
}

1126
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1127
                                   gpuStream_t stream) {
1128
  GetPrivate()->RecordStream(allocation, stream);
1129 1130
}

1131
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
1132
    const platform::Place& place, gpuStream_t stream) {
1133 1134 1135 1136 1137
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1138
  }
1139 1140

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
1141 1142
    return m->GetAllocator(place,
                           stream,
1143 1144 1145
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1146 1147
}

1148
gpuStream_t AllocatorFacade::GetStream(
1149
    const std::shared_ptr<phi::Allocation>& allocation) const {
1150
  return GetPrivate()->GetStream(allocation);
1151 1152
}

1153
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
1154
                                       gpuStream_t stream) {
1155 1156
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1157 1158 1159
  }
}

1160
#ifdef PADDLE_WITH_CUDA
1161
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(int64_t id) {
1162 1163
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1164 1165 1166 1167 1168 1169
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
1170 1171 1172 1173 1174 1175 1176 1177 1178
  auto& ref_cnt = cuda_graph_ref_cnt_[id];
  if (allocator.get() == nullptr) {
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    VLOG(10) << "Create memory pool for CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Use created memory pool for CUDA Graph with memory ID " << id;
  }
  ++ref_cnt;
1179 1180
}

1181 1182
void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(int64_t id) {
  auto ref_cnt_iter = cuda_graph_ref_cnt_.find(id);
1183 1184
  PADDLE_ENFORCE_NE(ref_cnt_iter,
                    cuda_graph_ref_cnt_.end(),
1185
                    platform::errors::InvalidArgument(
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
                        "Cannot find CUDA Graph with memory ID = %d", id));
  auto& ref_cnt = ref_cnt_iter->second;
  --ref_cnt;
  if (ref_cnt == 0) {
    cuda_graph_map_.erase(id);
    cuda_graph_ref_cnt_.erase(ref_cnt_iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Decrease memory pool ID " << id << " reference count to be "
             << ref_cnt;
  }
1197 1198
}
#endif
1199
#endif
1200 1201 1202
}  // namespace allocation
}  // namespace memory
}  // namespace paddle