allocator_facade.cc 43.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
25
#include "paddle/fluid/memory/allocation/stat_allocator.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/place.h"
28

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30
#include <shared_mutex>
31

32
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
33
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
35
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
36
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
38
#include "paddle/fluid/platform/device_context.h"
39
#include "paddle/phi/backends/gpu/gpu_context.h"
40 41

#ifdef PADDLE_WITH_CUDA
42
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
43
#endif
44

45 46 47 48 49
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
50
#endif
51

52
#ifdef PADDLE_WITH_XPU
53
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
54
#endif
55 56 57 58

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
59

J
jianghaicheng 已提交
60 61 62 63
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
64 65 66 67
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

68 69 70 71 72
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
73
PADDLE_DEFINE_EXPORTED_int64(
74
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
75 76 77
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
78 79 80 81
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
82

83 84 85
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

86 87 88
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
89
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, true,
90 91
                            "Enable StreamSafeCUDAAllocator");

92 93 94 95 96
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false,
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

97 98
DECLARE_string(allocator_strategy);

99 100 101 102
namespace paddle {
namespace memory {
namespace allocation {

103 104 105 106 107 108 109 110
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
111
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
112 113 114
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
115 116 117 118 119
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
120
    DecoratedAllocationPtr underlying_allocation_;
121 122 123 124 125 126
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
127 128
  ~CUDAGraphAllocator() { VLOG(10) << "CUDAGraphAllocator destructed"; }

129 130 131 132 133 134
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
135
  phi::Allocation* AllocateImpl(size_t size) {
136
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
137 138 139
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
140 141
  }

142
  void FreeImpl(phi::Allocation* allocation) {
143 144 145 146 147 148 149 150 151
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

152 153 154 155 156 157 158 159
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
  return UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing());
#else
  return false;
#endif
}

Y
Yu Yang 已提交
160 161
class AllocatorFacadePrivate {
 public:
162 163
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

164 165 166 167 168 169
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

170 171
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
172 173
    is_stream_safe_cuda_allocator_used_ = false;

174
    switch (strategy_) {
175 176
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
177 178 179 180 181
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
182
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
183
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
184 185 186
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
187
#endif
188 189 190 191 192
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
193 194 195 196
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
197
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
198 199 200 201 202
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
203 204
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
205
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
206 207
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
208
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
209 210 211 212 213
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
214
#endif
Z
Zeng Jinle 已提交
215 216
        break;
      }
217 218 219

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
220 221
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
222 223 224 225 226
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

227 228 229 230 231 232 233 234 235 236 237 238 239
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
        // manner in GetAllocator function with 'create_if_not_found = ture'.
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
240
        if (FLAGS_use_stream_safe_cuda_allocator) {
241 242 243 244
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
245
        }
246

247 248
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
249 250 251 252 253 254
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
255 256 257 258
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
259 260 261 262 263
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
264 265 266 267 268
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
269 270
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
271
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
272 273
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
274
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
275 276 277 278 279
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
280
#endif
Z
Zeng Jinle 已提交
281 282
        break;
      }
283

284 285
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
286 287 288 289 290
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
291 292 293 294 295
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
296
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
297
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
298 299 300
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
301 302 303 304 305
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
306 307 308 309
#endif
        break;
      }

Z
Zeng Jinle 已提交
310
      default: {
311
        PADDLE_THROW(platform::errors::InvalidArgument(
312
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
313
      }
Y
Yu Yang 已提交
314
    }
Z
Zeng Jinle 已提交
315
    InitZeroSizeAllocators();
316
    InitSystemAllocators();
317 318 319 320 321

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

322 323
    WrapStatAllocator();

324
    CheckAllocThreadSafe();
325 326

#ifdef PADDLE_WITH_CUDA
327 328 329
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
330 331 332
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
333 334 335 336
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
337
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
338
            << " " << place << " " << size;
339 340
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
341
                                                          : GetAllocatorMap())
342
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
343
    auto iter = allocators.find(place);
344 345 346
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
347
    return iter->second;
348 349
  }

350
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
351 352 353
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

354 355 356 357 358
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

359
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
360
  bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) {
361 362 363 364 365 366 367 368 369
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

370
  const std::shared_ptr<Allocator>& GetAllocator(
371
      const platform::CUDAPlace& place, gpuStream_t stream,
372
      bool create_if_not_found = false) {
373 374 375 376 377
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
378 379 380
    }

    /* shared_lock_guard */ {
381 382 383
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
384 385
        return cuda_allocators_[place][stream];
      } else {
386 387 388 389 390
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
391 392 393
      }
    }

394
    /* unique_lock_guard */ {
395 396 397 398
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
399
    }
400 401
  }

402 403 404 405 406 407 408 409 410 411
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
        iter, default_stream_safe_cuda_allocators_.end(),
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

412
  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const {
413 414 415 416 417
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

418
  void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) {
419 420
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    // NOTE(Ruibiao): The default stream will be set when the CUDADeviceContext
    // created. Normally, the DeviceContextPool is a global singleton and one
    // Place only correspond to one DeviceContext. However, to support
    // multi-stream scheduling, standalone executor creates two extra
    // DeviceContextPools for H2D and D2H stream in StreamAnalyzer, which make
    // one Place correspond to multiple DeviceContext and unexpectedly reset the
    // default stream in runtime. To avoid this behavior, we do not allow
    // changing default stream after initially setting.
    if (allocator->GetDefaultStream() != nullptr) {
      VLOG(5) << "The default stream for StreamSafeCUDAAllocator("
              << allocator.get() << ") in " << place << " has been set to "
              << allocator->GetDefaultStream()
              << " before, not allow to change now.";
      return;
    }

438 439 440 441 442 443
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

444
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
445
                    gpuStream_t stream) {
446 447 448 449 450 451
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
452
    }
453 454
  }

455
  gpuStream_t GetStream(
456
      const std::shared_ptr<phi::Allocation>& allocation) const {
457 458 459 460 461 462 463 464 465 466 467
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
468 469 470 471 472 473 474 475 476 477
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
478
    phi::Allocation* AllocateImpl(size_t size) override {
479 480
      return new Allocation(nullptr, 0, place_);
    }
481
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
482 483 484 485 486

   private:
    platform::Place place_;
  };

487
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
488

489 490 491
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
492 493
  }

494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
495 496 497
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
498 499
  }

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
          strategy_, AllocatorStrategy::kAutoGrowth,
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
524 525
            "Or you must use the gpu device that supports managed memory.",
            p.device));
526 527 528 529 530 531
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

532 533 534 535 536 537 538
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
539 540 541
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
542 543 544
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
545
      WrapStatAllocator(p, stream);
546 547 548 549 550
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
551
    auto cuda_allocator = CreateCUDAAllocator(p);
552
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
553
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
554 555 556 557 558 559 560
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
561
      PADDLE_ENFORCE_GPU_SUCCESS(
562 563
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

564
      PADDLE_ENFORCE_GPU_SUCCESS(
565 566 567 568 569 570 571 572 573 574 575 576 577
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
578
      auto cuda_allocator = CreateCUDAAllocator(p);
579 580 581 582 583 584
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
585
    auto cuda_allocator = CreateCUDAAllocator(p);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
622 623
  }

624
  // NOTE(Ruibiao): Old single-stream version, will be removed later
625 626
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
627
#if defined(PADDLE_WITH_HIP)
628
    auto cuda_allocator = CreateCUDAAllocator(p);
629 630 631 632 633 634 635 636 637
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
638
      PADDLE_ENFORCE_GPU_SUCCESS(
639 640
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

641
      PADDLE_ENFORCE_GPU_SUCCESS(
642 643 644 645 646 647 648 649 650 651 652 653 654
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
655
      auto cuda_allocator = CreateCUDAAllocator(p);
656 657 658 659 660
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
661
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
693
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
694
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
695 696
#endif
#endif
S
sneaxiy 已提交
697
  }
698 699 700 701 702 703

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
704 705 706 707
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
        allocator, p, stream,
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
708 709
  }

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
                pair.second, place, /* default_stream = */ nullptr,
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

730 731 732 733 734 735
  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
736
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
737 738 739
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

740 741 742 743 744
  void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

745 746 747 748 749 750 751 752 753
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

754 755 756 757 758 759 760 761 762
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
763
#endif
S
sneaxiy 已提交
764

765 766 767 768 769 770
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
771 772 773 774 775 776
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
777 778 779 780 781 782
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

783 784 785 786
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
787 788 789 790 791

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
792 793
#endif

794 795 796 797 798 799 800 801 802 803
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
804
        custom_allocator, phi::DeviceManager::GetMinChunkSize(p),
805 806 807 808
        allow_free_idle_chunk);
  }
#endif

809 810 811 812 813 814 815 816
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
817
    }
818
#endif
J
jianghaicheng 已提交
819 820 821 822 823 824 825
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
826 827 828
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
829
    int device_count = platform::GetGPUDeviceCount();
830 831
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
832
      system_allocators_[p] = CreateCUDAAllocator(p);
833
    }
F
fwenguang 已提交
834 835 836 837
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
838
      platform::MLUPlace p(i);
F
fwenguang 已提交
839 840
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
841 842 843 844 845 846 847 848 849 850
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) {
        platform::CustomPlace p(dev_type, dev_id);
        system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
      }
    }
851 852
#endif
  }
Z
Zeng Jinle 已提交
853 854

  void InitZeroSizeAllocators() {
855
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
856 857
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
858
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
859
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
860 861 862 863 864
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
865 866 867 868 869 870
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
871 872 873 874 875 876
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
877 878 879 880 881 882
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
883 884 885 886 887 888
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
889
#ifdef PADDLE_WITH_CUSTOM_DEVICE
890
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
891 892
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
893
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) {
894 895 896 897
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
898 899 900

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
901 902
    }
  }
Z
Zeng Jinle 已提交
903

904 905 906 907 908
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
909
    }
910
  }
911

912 913 914 915
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
916
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
917
    if (is_stream_safe_cuda_allocator_used_) {
918 919 920
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
921 922 923
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
924 925 926 927
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
928 929 930 931 932 933 934
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

935 936
  void WrapStatAllocator() {
    for (auto& pair : allocators_) {
937 938 939 940 941 942 943
      // Now memory stats is only supported for CPU and GPU
      const platform::Place& place = pair.first;
      if (platform::is_cpu_place(place) ||
          platform::is_cuda_pinned_place(place) ||
          platform::is_gpu_place(place)) {
        pair.second = std::make_shared<StatAllocator>(pair.second);
      }
944 945 946
    }
  }

947 948
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
949 950
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
951
  CUDAAllocatorMap cuda_allocators_;
952
  std::shared_timed_mutex cuda_allocator_mutex_;
953 954
#endif
  AllocatorStrategy strategy_;
955
  AllocatorMap allocators_;
956 957
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
958
  bool allow_free_idle_chunk_;
959
  bool is_stream_safe_cuda_allocator_used_;
960
};
961 962 963 964
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
965
// Pimpl. Make interface clean.
966
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
967 968 969
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
970 971

AllocatorFacade& AllocatorFacade::Instance() {
972 973 974 975 976 977
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
978
  if (UNLIKELY(IsCUDAGraphCapturing())) {
979
    auto id = platform::CUDAGraph::CapturingPoolID();
980 981 982 983 984 985 986 987 988 989
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
        iter, cuda_graph_map_.end(),
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
990 991
}

992 993
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
994 995
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
996 997
}

998
void* AllocatorFacade::GetBasePtr(
999
    const std::shared_ptr<phi::Allocation>& allocation) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
1010
  return GetPrivate()->GetBasePtr(allocation);
1011 1012
}

1013 1014
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
1015
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
1016 1017
}

1018
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
1019
    const platform::Place& place, size_t size) {
1020
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
1021 1022
}

1023 1024
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
1025
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
1026 1027
}

W
Wilber 已提交
1028
uint64_t AllocatorFacade::Release(const platform::Place& place) {
1029 1030
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
1031 1032 1033
      ->Release(place);
}

1034 1035
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
1036
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
1037 1038
}

1039 1040
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const phi::Stream& stream) {
1041
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1042 1043 1044 1045 1046
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
1047

1048 1049 1050
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1051
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1052 1053
        ->Allocate(size);
  } else {
1054
    return m->GetAllocator(p, size)->Allocate(size);
1055 1056 1057 1058 1059 1060
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

1061 1062 1063
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1064
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1065 1066 1067 1068
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1069
#endif
1070 1071
}

1072 1073 1074 1075
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1076
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1077
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
1078
                                  gpuStream_t stream) {
1079 1080 1081 1082 1083 1084 1085
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1086 1087
}

1088
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1089
                                   gpuStream_t stream) {
1090
  GetPrivate()->RecordStream(allocation, stream);
1091 1092
}

1093
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
1094
    const platform::Place& place, gpuStream_t stream) {
1095 1096 1097 1098 1099
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1100
  }
1101 1102 1103 1104 1105 1106

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
    return m->GetAllocator(place, stream,
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1107 1108
}

1109
gpuStream_t AllocatorFacade::GetStream(
1110
    const std::shared_ptr<phi::Allocation>& allocation) const {
1111
  return GetPrivate()->GetStream(allocation);
1112 1113
}

1114
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
1115
                                       gpuStream_t stream) {
1116 1117
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1118 1119 1120
  }
}

1121
#ifdef PADDLE_WITH_CUDA
1122
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(int64_t id) {
1123 1124 1125 1126 1127 1128 1129
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
1130 1131 1132 1133 1134 1135 1136 1137 1138
  auto& ref_cnt = cuda_graph_ref_cnt_[id];
  if (allocator.get() == nullptr) {
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    VLOG(10) << "Create memory pool for CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Use created memory pool for CUDA Graph with memory ID " << id;
  }
  ++ref_cnt;
1139 1140
}

1141 1142 1143
void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(int64_t id) {
  auto ref_cnt_iter = cuda_graph_ref_cnt_.find(id);
  PADDLE_ENFORCE_NE(ref_cnt_iter, cuda_graph_ref_cnt_.end(),
1144
                    platform::errors::InvalidArgument(
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                        "Cannot find CUDA Graph with memory ID = %d", id));
  auto& ref_cnt = ref_cnt_iter->second;
  --ref_cnt;
  if (ref_cnt == 0) {
    cuda_graph_map_.erase(id);
    cuda_graph_ref_cnt_.erase(ref_cnt_iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Decrease memory pool ID " << id << " reference count to be "
             << ref_cnt;
  }
1156 1157
}
#endif
1158
#endif
1159 1160 1161
}  // namespace allocation
}  // namespace memory
}  // namespace paddle