kldiv_loss_op.cc 5.6 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
D
dengkaipeng 已提交
13
#include <string>
14

15
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
27
  phi::KernelKey GetExpectedKernelType(
D
dengkaipeng 已提交
28
      const framework::ExecutionContext& ctx) const override {
29 30
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.GetPlace());
D
dengkaipeng 已提交
31 32 33 34 35 36 37
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
38 39
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
40 41
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
42
    AddInput("Target",
D
dengkaipeng 已提交
43
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
44 45
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
46 47 48 49 50 51 52 53 54 55 56
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
57
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
58 59 60 61 62
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
63 64
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
65

D
dengkaipeng 已提交
66
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
67

D
dengkaipeng 已提交
68 69 70
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
71 72

         While :attr:`reduction` is :attr:`none`, output loss is in
73
         the same shape as Input(X), loss in each point is calculated
S
Shuangchi He 已提交
74
         separately and no reduction is applied.
75

D
dengkaipeng 已提交
76
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
77
         shape of [1] and loss value is the mean value of all losses.
78

D
dengkaipeng 已提交
79
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
80
         shape of [1] and loss value is the sum value of all losses.
81 82

         While :attr:`reduction` is :attr:`batchmean`, output loss is
D
dengkaipeng 已提交
83 84
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
85

D
dengkaipeng 已提交
86 87 88 89 90 91 92 93
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
94 95
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLossGrad");
96 97 98 99
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input",
                   "Loss@GRAD",
                   "KLDivLossGrad");
D
dengkaipeng 已提交
100 101 102 103 104 105 106
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
107
  phi::KernelKey GetExpectedKernelType(
D
dengkaipeng 已提交
108
      const framework::ExecutionContext& ctx) const override {
109 110 111
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Loss")),
                          ctx.GetPlace());
D
dengkaipeng 已提交
112 113 114
  }
};

H
hong 已提交
115 116
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
D
dengkaipeng 已提交
117
 public:
H
hong 已提交
118
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
D
dengkaipeng 已提交
119 120

 protected:
121
  void Apply(GradOpPtr<T> op) const override {
D
dengkaipeng 已提交
122
    op->SetType("kldiv_loss_grad");
H
hong 已提交
123 124 125
    op->SetInput("X", this->Input("X"));
    op->SetInput("Target", this->Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
D
dengkaipeng 已提交
126

H
hong 已提交
127
    op->SetAttrMap(this->Attrs());
D
dengkaipeng 已提交
128

H
hong 已提交
129
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
D
dengkaipeng 已提交
130 131 132
  }
};

133
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInferer, "X");
134

D
dengkaipeng 已提交
135 136 137 138
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
139 140
DECLARE_INFER_SHAPE_FUNCTOR(kldiv_loss,
                            KLDivInferShapeFunctor,
141 142
                            PD_INFER_META(phi::KLDivInferMeta));

143 144 145
REGISTER_OPERATOR(kldiv_loss,
                  ops::KLDivLossOp,
                  ops::KLDivLossOpMaker,
H
hong 已提交
146
                  ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
147 148
                  ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>,
                  KLDivInferShapeFunctor);
149 150
REGISTER_OPERATOR(kldiv_loss_grad,
                  ops::KLDivLossOpGrad,
151
                  ops::KLDivLossGradNoNeedBufferVarInferer);