kldiv_loss_op.cc 6.7 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/kldiv_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of KLDivLossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Target"),
                   "Input(Target) of KLDivLossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of KLDivLossOp should not be null.");

    auto dim_x = ctx->GetInputDim("X");
    auto dim_target = ctx->GetInputDim("Target");
    PADDLE_ENFORCE_EQ(dim_x.size(), dim_target.size(),
                      "Input(X) rank and Input(Target) rank should be same.");
D
dengkaipeng 已提交
37
    for (int i = 0; i < dim_x.size(); i++) {
38 39 40 41
      if (ctx->IsRuntime() || (dim_x[i] > 0 && dim_target[i] > 0)) {
        PADDLE_ENFORCE_EQ(dim_x[i], dim_target[i],
                          "Input(X) and Input(Target) should in same shape.");
      }
D
dengkaipeng 已提交
42 43 44 45 46 47 48 49 50 51 52 53
    }

    auto reduction = ctx->Attrs().Get<std::string>("reduction");

    PADDLE_ENFORCE(
        "mean" == reduction || "sum" == reduction || "batchmean" == reduction ||
            "none" == reduction,
        "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'.");

    if ("none" == reduction) {
      ctx->SetOutputDim("Loss", dim_x);
    } else {
D
dengkaipeng 已提交
54
      ctx->SetOutputDim("Loss", {1});
D
dengkaipeng 已提交
55 56 57 58 59 60
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
61 62
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
63 64 65 66 67 68 69
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
70 71
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
72 73
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
74
    AddInput("Target",
D
dengkaipeng 已提交
75
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
76 77
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
78 79 80 81 82 83 84 85 86 87 88
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
89
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
90 91 92 93 94
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
95 96
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
97

D
dengkaipeng 已提交
98
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
99

D
dengkaipeng 已提交
100 101 102
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
103 104

         While :attr:`reduction` is :attr:`none`, output loss is in
D
dengkaipeng 已提交
105 106
         the same shape as Input(X), loss in each point is calculated 
         seperately and no reduction is applied.
D
dengkaipeng 已提交
107
         
D
dengkaipeng 已提交
108
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
109 110
         shape of [1] and loss value is the mean value of all losses.
         
D
dengkaipeng 已提交
111
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
112 113
         shape of [1] and loss value is the sum value of all losses.
         
D
dengkaipeng 已提交
114
         While :attr:`reduction` is :attr:`batchmean`, output loss is 
D
dengkaipeng 已提交
115 116
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
D
dengkaipeng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
         
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Target"), "Input(Target) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
139 140
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  }
};

class KLDivLossOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("kldiv_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Target", Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(kldiv_loss, ops::KLDivLossOp, ops::KLDivLossOpMaker,
                  ops::KLDivLossOpGradMaker);
REGISTER_OPERATOR(kldiv_loss_grad, ops::KLDivLossOpGrad);
REGISTER_OP_CPU_KERNEL(
    kldiv_loss, ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    kldiv_loss_grad,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, double>);