kldiv_loss_op.cc 7.4 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/kldiv_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24 25
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
26 27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLoss");
    OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLoss");
    OP_INOUT_CHECK(ctx->HasOutput("Loss"), "Output", "Loss", "KLDivLoss");
D
dengkaipeng 已提交
29 30 31 32

    auto dim_x = ctx->GetInputDim("X");
    auto dim_target = ctx->GetInputDim("Target");
    PADDLE_ENFORCE_EQ(dim_x.size(), dim_target.size(),
33 34 35 36
                      platform::errors::InvalidArgument(
                          "Input(X) rank and Input(Target) rank should be "
                          "same, but received X rank(%d) != Target rank(%d)",
                          dim_x.size(), dim_target.size()));
D
dengkaipeng 已提交
37
    for (int i = 0; i < dim_x.size(); i++) {
38
      if (ctx->IsRuntime() || (dim_x[i] > 0 && dim_target[i] > 0)) {
39 40 41 42 43 44
        PADDLE_ENFORCE_EQ(
            dim_x[i], dim_target[i],
            platform::errors::InvalidArgument(
                "Input(X) and Input(Target) should in same shape. but received "
                "X dimension[%d](%d) != Target dimension[%d](%d)",
                i, dim_x[i], i, dim_target[i]));
45
      }
D
dengkaipeng 已提交
46 47 48 49
    }

    auto reduction = ctx->Attrs().Get<std::string>("reduction");

50 51 52 53 54 55
    auto reduction_valid = "mean" == reduction || "sum" == reduction ||
                           "batchmean" == reduction || "none" == reduction;
    PADDLE_ENFORCE_EQ(
        reduction_valid, true,
        platform::errors::InvalidArgument(
            "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."));
D
dengkaipeng 已提交
56 57 58 59

    if ("none" == reduction) {
      ctx->SetOutputDim("Loss", dim_x);
    } else {
D
dengkaipeng 已提交
60
      ctx->SetOutputDim("Loss", {1});
D
dengkaipeng 已提交
61 62 63 64 65 66
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
67 68
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
69 70 71 72 73 74 75
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
76 77
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
78 79
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
80
    AddInput("Target",
D
dengkaipeng 已提交
81
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
82 83
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
84 85 86 87 88 89 90 91 92 93 94
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
95
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
96 97 98 99 100
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
101 102
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
103

D
dengkaipeng 已提交
104
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
105

D
dengkaipeng 已提交
106 107 108
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
109 110

         While :attr:`reduction` is :attr:`none`, output loss is in
D
dengkaipeng 已提交
111 112
         the same shape as Input(X), loss in each point is calculated 
         seperately and no reduction is applied.
D
dengkaipeng 已提交
113
         
D
dengkaipeng 已提交
114
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
115 116
         shape of [1] and loss value is the mean value of all losses.
         
D
dengkaipeng 已提交
117
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
118 119
         shape of [1] and loss value is the sum value of all losses.
         
D
dengkaipeng 已提交
120
         While :attr:`reduction` is :attr:`batchmean`, output loss is 
D
dengkaipeng 已提交
121 122
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
D
dengkaipeng 已提交
123 124 125 126 127 128 129 130 131
         
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
132 133 134 135
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input",
                   "Loss@GRAD", "KLDivLossGrad");
D
dengkaipeng 已提交
136 137 138 139 140 141 142 143 144
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
145 146 147
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
                                   ctx.GetPlace());
D
dengkaipeng 已提交
148 149 150
  }
};

H
hong 已提交
151 152
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
D
dengkaipeng 已提交
153
 public:
H
hong 已提交
154
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
D
dengkaipeng 已提交
155 156

 protected:
157
  void Apply(GradOpPtr<T> op) const override {
D
dengkaipeng 已提交
158
    op->SetType("kldiv_loss_grad");
H
hong 已提交
159 160 161
    op->SetInput("X", this->Input("X"));
    op->SetInput("Target", this->Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
D
dengkaipeng 已提交
162

H
hong 已提交
163
    op->SetAttrMap(this->Attrs());
D
dengkaipeng 已提交
164

H
hong 已提交
165
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
D
dengkaipeng 已提交
166 167 168
  }
};

169
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInference, "X");
170

D
dengkaipeng 已提交
171 172 173 174 175
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(kldiv_loss, ops::KLDivLossOp, ops::KLDivLossOpMaker,
H
hong 已提交
176 177
                  ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
                  ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>);
178 179
REGISTER_OPERATOR(kldiv_loss_grad, ops::KLDivLossOpGrad,
                  ops::KLDivLossGradNoNeedBufferVarInference);
D
dengkaipeng 已提交
180 181 182 183 184 185 186
REGISTER_OP_CPU_KERNEL(
    kldiv_loss, ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    kldiv_loss_grad,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, double>);