kldiv_loss_op.cc 5.6 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
D
dengkaipeng 已提交
13
#include <string>
14

15
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
31 32
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
33 34 35 36 37 38 39
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
40 41
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
42 43
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
44
    AddInput("Target",
D
dengkaipeng 已提交
45
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
46 47
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
48 49 50 51 52 53 54 55 56 57 58
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
59
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
60 61 62 63 64
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
65 66
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
67

D
dengkaipeng 已提交
68
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
69

D
dengkaipeng 已提交
70 71 72
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
73 74

         While :attr:`reduction` is :attr:`none`, output loss is in
D
dengkaipeng 已提交
75 76
         the same shape as Input(X), loss in each point is calculated 
         seperately and no reduction is applied.
D
dengkaipeng 已提交
77
         
D
dengkaipeng 已提交
78
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
79 80
         shape of [1] and loss value is the mean value of all losses.
         
D
dengkaipeng 已提交
81
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
82 83
         shape of [1] and loss value is the sum value of all losses.
         
D
dengkaipeng 已提交
84
         While :attr:`reduction` is :attr:`batchmean`, output loss is 
D
dengkaipeng 已提交
85 86
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
D
dengkaipeng 已提交
87 88 89 90 91 92 93 94 95
         
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
96 97 98 99
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input",
                   "Loss@GRAD", "KLDivLossGrad");
D
dengkaipeng 已提交
100 101 102 103 104 105 106 107 108
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
109 110 111
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
                                   ctx.GetPlace());
D
dengkaipeng 已提交
112 113 114
  }
};

H
hong 已提交
115 116
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
D
dengkaipeng 已提交
117
 public:
H
hong 已提交
118
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
D
dengkaipeng 已提交
119 120

 protected:
121
  void Apply(GradOpPtr<T> op) const override {
D
dengkaipeng 已提交
122
    op->SetType("kldiv_loss_grad");
H
hong 已提交
123 124 125
    op->SetInput("X", this->Input("X"));
    op->SetInput("Target", this->Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
D
dengkaipeng 已提交
126

H
hong 已提交
127
    op->SetAttrMap(this->Attrs());
D
dengkaipeng 已提交
128

H
hong 已提交
129
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
D
dengkaipeng 已提交
130 131 132
  }
};

133
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInferer, "X");
134

D
dengkaipeng 已提交
135 136 137 138
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
139 140 141
DECLARE_INFER_SHAPE_FUNCTOR(kldiv_loss, KLDivInferShapeFunctor,
                            PD_INFER_META(phi::KLDivInferMeta));

D
dengkaipeng 已提交
142
REGISTER_OPERATOR(kldiv_loss, ops::KLDivLossOp, ops::KLDivLossOpMaker,
H
hong 已提交
143
                  ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
144 145
                  ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>,
                  KLDivInferShapeFunctor);
146
REGISTER_OPERATOR(kldiv_loss_grad, ops::KLDivLossOpGrad,
147
                  ops::KLDivLossGradNoNeedBufferVarInferer);