test_jit_save_load.py 48.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19
import shutil
20 21
import unittest
import numpy as np
L
Leo Chen 已提交
22
import paddle
23
from paddle.static import InputSpec
24
import paddle.fluid as fluid
25
from paddle.fluid.layers.utils import flatten
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.dygraph import declarative, ProgramTranslator
28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
29
from paddle.fluid import unique_name
30 31

BATCH_SIZE = 32
32
BATCH_NUM = 10
33 34 35
SEED = 10


36 37
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
38
        np.random.seed(SEED)
39 40 41
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
42 43 44

    def __reader__():
        for _ in range(BATCH_NUM):
45 46 47
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
48 49 50 51 52 53 54 55 56 57 58 59 60 61

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


62 63 64 65 66 67 68 69 70 71
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


72 73 74 75 76 77 78 79 80
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


C
Chen Weihang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
class LinerNetWithPruneInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


130 131 132 133 134 135 136 137 138 139 140 141 142
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
class LinearNetMultiInput1(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput1, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=(InputSpec(
        [None, 8], dtype='float32'), InputSpec(
            [None, 8], dtype='float32')))
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


177 178 179 180
class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
181 182
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
        'img': InputSpec(
            shape=[None, 8], dtype='float32', name='img')
    }, {
        'label': InputSpec(
            shape=[None, 1], dtype='int64', name='label')
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


241 242 243 244 245 246 247 248 249 250
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


289
def train(layer, input_size=784, label_size=1):
290
    # create optimizer
L
Leo Chen 已提交
291
    sgd = fluid.optimizer.SGDOptimizer(
292
        learning_rate=0.01, parameter_list=layer.parameters())
293 294
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
295 296
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
297 298 299 300 301 302 303 304 305 306 307
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
308
        sgd.minimize(avg_loss)
309 310 311 312
        layer.clear_gradients()
    return [img], layer, avg_loss


313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


334 335
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
336
        self.model_path = "test_jit_save_load/model"
337 338 339
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
340
        paddle.seed(SEED)
L
Leo Chen 已提交
341
        paddle.framework.random._manual_program_seed(SEED)
342

343
    def train_and_save_model(self, model_path=None):
344 345
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
346
        final_model_path = model_path if model_path else self.model_path
347
        orig_input_types = [type(x) for x in example_inputs]
348 349
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
350 351
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
352 353
        return layer

354
    def test_save_load(self):
355 356 357
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
358
        loaded_layer = paddle.jit.load(self.model_path)
359 360 361 362 363
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
364
        train_layer.eval()
365
        infer_layer.eval()
366 367 368 369 370 371
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

372 373
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
374 375
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
376 377
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
378 379 380
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

381 382
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
383
        # construct new model
384
        new_layer = LinearNet(784, 1)
385
        orig_state_dict = new_layer.state_dict()
386
        load_state_dict = paddle.load(self.model_path)
387 388 389
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
390 391 392 393 394 395 396
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

397
    def test_load_dygraph_no_path(self):
398
        model_path = "test_jit_save_load.no_path/model_path"
399 400 401
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

402 403 404 405 406
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
        # NOTE: This net cannot be executed, it is just 
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
        # net.forward.concrete_program.inputs: 
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, 
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, 
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)

        path = "test_jit_save_load_with_dict_input_no_prune/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img'),
                'img2': InputSpec(
                    shape=[None, 8], dtype='float32', name='img2')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)


487 488 489 490 491 492 493 494 495 496 497 498
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

499
        model_path = "input_spec.output_spec/model"
500 501 502 503 504 505 506
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
507 508
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
509 510

        # 2. load to infer
511
        infer_layer = paddle.jit.load(model_path)
512 513 514 515 516 517 518
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

519
        model_path = "multi_inout.output_spec1/model"
520 521 522 523 524 525 526 527
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
528 529
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
530 531

        # 3. load to infer
532
        infer_layer = paddle.jit.load(model_path)
533 534 535 536 537 538 539 540
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
541 542 543
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
544
        # 2. load again
545
        infer_layer2 = paddle.jit.load(model_path)
546 547 548 549 550
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

        model_path = "multi_inout1.output_spec1/model"
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
        model_path = "multi_inout1.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, (input_x, ), output_spec=output_spec)
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
587 588


589 590 591 592 593
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
594
        paddle.seed(SEED)
L
Leo Chen 已提交
595
        paddle.framework.random._manual_program_seed(SEED)
596 597 598 599 600 601 602 603 604 605 606 607 608

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

609 610 611
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
612
            layer=train_layer,
613
            path=model_path,
614
            input_spec=[x],
615
            output_spec=output_spec)
616 617

        train_layer.eval()
618
        infer_layer = paddle.jit.load(model_path)
619 620 621 622 623
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

645

646 647 648
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
649
        self.model_path = "jit_multi_load/model"
650 651 652
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
653
        paddle.seed(SEED)
L
Leo Chen 已提交
654
        paddle.framework.random._manual_program_seed(SEED)
655 656 657 658 659 660
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
661 662
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
663 664 665 666 667 668 669 670 671 672 673

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


674 675 676
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
677
        self.model_path = "jit_prune_model_and_load/model"
678 679 680
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
681
        paddle.seed(SEED)
L
Leo Chen 已提交
682
        paddle.framework.random._manual_program_seed(SEED)
683 684 685 686 687 688 689 690 691 692 693 694 695

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

696 697
        output_spec = [hidden]
        paddle.jit.save(
698
            layer=train_layer,
699
            path=self.model_path,
700
            input_spec=[x],
701
            output_spec=output_spec)
702 703 704 705 706 707 708

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

709
        infer_layer = paddle.jit.load(self.model_path)
710 711 712 713 714 715 716 717 718 719

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
720
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
721 722 723 724 725 726 727
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
728
            paddle.jit.load(self.model_path)
729 730


731 732 733 734 735
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
736
        paddle.seed(SEED)
737 738
        paddle.framework.random._manual_program_seed(SEED)

C
Chen Weihang 已提交
739 740 741 742 743
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
744 745 746 747
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
748
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
749
        if with_label_and_loss:
Z
Zhou Wei 已提交
750
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
751 752
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
753 754 755 756
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
757 758 759 760 761 762 763 764 765 766 767 768 769
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

770
        model_path = "test_no_prune_to_static_after_train/model"
771 772 773 774 775 776 777
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

778
        model_path = "test_no_prune_to_static_no_train/model"
779 780 781 782 783 784 785 786 787
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

788
        model_path = "test_no_prune_no_to_static_after_train/model"
789 790 791 792 793 794 795 796 797 798 799 800 801
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

802 803
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
804 805 806 807 808 809

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

810
        model_path = "test_no_prune_no_to_static_no_train/model"
811 812 813 814 815 816 817 818 819 820 821 822 823
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

824
        model_path = "test_prune_to_static_after_train/model"
825 826 827 828 829 830 831
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
832
            output_spec=[out])
833

C
Chen Weihang 已提交
834 835
        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True)
836 837 838 839

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

840
        model_path = "test_prune_to_static_no_train/model"
841 842
        # TODO: no train, cannot get output_spec var here
        # now only can use index
843
        output_spec = layer.forward.outputs[:1]
844 845 846 847 848 849 850
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
851
            output_spec=output_spec)
852

C
Chen Weihang 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True)

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

        model_path = "test_prune_input_to_static_no_train/model"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ])

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

        model_path = "test_prune_useless_input_to_static_no_train/model"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ])

        self.verify_inference_correctness(layer, model_path, with_label=True)
883 884 885 886 887 888

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

889
        model_path = "test_no_prune_input_spec_name_warning/model"
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

910
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
911
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
912
        paddle.jit.save(layer, model_path, output_spec=[out])
913 914 915 916 917 918

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

919
        model_path = "test_prune_input_spec_name_error/model"
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

940
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
941
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
942 943 944 945 946 947 948 949
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
950
                output_spec=[out])
951 952


953 954
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
955
        self.model_path = "jit_save_load_empty_layer/model"
956 957 958 959 960
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
961
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
962 963 964 965 966 967 968 969 970
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
971
        self.model_path = "jit_save_load_no_param_layer/model"
972 973 974 975 976
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
977 978
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
979 980 981 982 983 984 985
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def test_parse_name(self):
        model_path_inference = "jit_save_load_parse_name/model"
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1026

W
WeiXin 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
class LayerSaved(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


class LayerLoadFinetune(paddle.nn.Layer):
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_save_without_running/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
        paddle.jit.save(
            layer_save,
            model_path,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, IMAGE_SIZE], dtype='float32')
            ])
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
            paddle.jit.save(
                layer_load,
                model_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None, IMAGE_SIZE], dtype='float32')
                ])
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_finetune_load/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1157 1158 1159 1160 1161 1162
# NOTE(weixin): When there are multiple test functions in an 
# `unittest.TestCase`, functions will affect each other, 
# and there is a risk of random failure. 
# So divided into three TestCase: TestJitSaveLoadFunctionCase1, 
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_static_function(self):
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

        path = 'test_jit_save_load_function_1/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1181 1182 1183 1184 1185

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def test_jit_save_load_function_input_spec(self):
        @paddle.jit.to_static(input_spec=[
            InputSpec(
                shape=[None, 6], dtype='float32', name='x'),
        ])
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

        path = 'test_jit_save_load_function_2/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1203 1204 1205 1206 1207

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    def test_jit_save_load_function_function(self):
        def fun(inputs):
            return paddle.tanh(inputs)

        path = 'test_jit_save_load_function_3/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(
            fun,
            path,
            input_spec=[
                InputSpec(
                    shape=[None, 6], dtype='float32', name='x'),
            ])
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

        func = paddle.jit.to_static(
            layer.anothor_forward, [paddle.static.InputSpec(shape=[-1, 5])])
        path = 'test_jit_save_load_function_with_params_case1/func'
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

        path = 'test_jit_save_load_function_with_params_case2/func'
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

        self.assertTrue(
            np.array_equal(origin_result.numpy(), load_result.numpy()))


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

        path = 'test_jit_save_load_function_with_params_case3/func'
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
class TestJitSaveLoadDataParallel(unittest.TestCase):
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_inputspec/model"
        paddle.jit.save(
            layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])])

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_to_static/model"
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
        InputSpec(
            shape=[None, 8], dtype='float32', name='x'), InputSpec(
                shape=[None, 1], dtype='float64', name='y')
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[None, 8], dtype='float32', name='x'), InputSpec(
                        shape=[None, 1], dtype='float64', name='y')
            ])
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[8, 8], dtype='float32'), InputSpec(
                        shape=[8, -1], dtype='float64')
            ])
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float64'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape len mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8, 1], dtype='float32'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float32'), InputSpec(
                            shape=[None, 2], dtype='float64')
                ])
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1456
if __name__ == '__main__':
1457 1458
    with fluid.framework._test_eager_guard():
        unittest.main()