test_jit_save_load.py 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23
import paddle.fluid as fluid
24
from paddle.fluid.layers.utils import flatten
25
from paddle.fluid.dygraph import Linear
26
from paddle.fluid.dygraph import declarative, ProgramTranslator
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
28
from paddle.fluid import unique_name
29 30

BATCH_SIZE = 32
31
BATCH_NUM = 10
32 33 34
SEED = 10


35 36
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
37
        np.random.seed(SEED)
38 39 40
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
41 42 43

    def __reader__():
        for _ in range(BATCH_NUM):
44 45 46
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
47 48 49 50 51 52 53 54 55 56 57 58 59 60

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


61 62 63 64 65 66 67 68 69 70
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


71 72 73 74 75 76 77 78 79
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


97 98 99 100 101 102 103 104 105 106 107 108 109
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
132 133
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
        'img': InputSpec(
            shape=[None, 8], dtype='float32', name='img')
    }, {
        'label': InputSpec(
            shape=[None, 1], dtype='int64', name='label')
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


230
def train(layer, input_size=784, label_size=1):
231
    # create optimizer
L
Leo Chen 已提交
232
    sgd = fluid.optimizer.SGDOptimizer(
233
        learning_rate=0.01, parameter_list=layer.parameters())
234 235
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
236 237
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
238 239 240 241 242 243 244 245 246 247 248
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
249
        sgd.minimize(avg_loss)
250 251 252 253
        layer.clear_gradients()
    return [img], layer, avg_loss


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


275 276
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
277
        self.model_path = "test_jit_save_load/model"
278 279 280
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
281
        paddle.seed(SEED)
L
Leo Chen 已提交
282
        paddle.framework.random._manual_program_seed(SEED)
283

284
    def train_and_save_model(self, model_path=None):
285 286
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
287
        final_model_path = model_path if model_path else self.model_path
288
        orig_input_types = [type(x) for x in example_inputs]
289 290
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
291 292
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
293 294
        return layer

295
    def test_save_load(self):
296 297 298
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
299
        loaded_layer = paddle.jit.load(self.model_path)
300 301 302 303 304
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
305
        train_layer.eval()
306
        infer_layer.eval()
307 308 309 310 311 312
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

313 314
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
315 316
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
317 318
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
319 320 321
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

322 323
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
324
        # construct new model
325
        new_layer = LinearNet(784, 1)
326
        orig_state_dict = new_layer.state_dict()
327
        load_state_dict = paddle.load(self.model_path)
328 329 330
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
331 332 333 334 335 336 337
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

338
    def test_load_dygraph_no_path(self):
339
        model_path = "test_jit_save_load.no_path/model_path"
340 341 342
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

343
    def test_jit_load_model_incomplete(self):
344 345 346 347
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
348 349 350 351
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

352 353 354 355 356
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
        # NOTE: This net cannot be executed, it is just 
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
        # net.forward.concrete_program.inputs: 
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, 
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, 
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


413 414 415 416 417 418 419 420 421 422 423 424
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

425
        model_path = "input_spec.output_spec/model"
426 427 428 429 430 431 432
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
433 434
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
435 436

        # 2. load to infer
437
        infer_layer = paddle.jit.load(model_path)
438 439 440 441 442 443 444
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

445
        model_path = "multi_inout.output_spec1/model"
446 447 448 449 450 451 452 453
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
454 455
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
456 457

        # 3. load to infer
458
        infer_layer = paddle.jit.load(model_path)
459 460 461 462 463 464 465 466
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
467 468 469
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
470
        # 2. load again
471
        infer_layer2 = paddle.jit.load(model_path)
472 473 474 475 476 477 478
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


479 480 481 482 483
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
484
        paddle.seed(SEED)
L
Leo Chen 已提交
485
        paddle.framework.random._manual_program_seed(SEED)
486 487 488 489 490 491 492 493 494 495 496 497 498

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

499 500 501
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
502
            layer=train_layer,
503
            path=model_path,
504
            input_spec=[x],
505
            output_spec=output_spec)
506 507

        train_layer.eval()
508
        infer_layer = paddle.jit.load(model_path)
509 510 511 512 513
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

535

536 537 538
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
539
        self.model_path = "jit_multi_load/model"
540 541 542
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
543
        paddle.seed(SEED)
L
Leo Chen 已提交
544
        paddle.framework.random._manual_program_seed(SEED)
545 546 547 548 549 550
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
551 552
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
553 554 555 556 557 558 559 560 561 562 563

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


564 565 566
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
567
        self.model_path = "jit_prune_model_and_load/model"
568 569 570
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
571
        paddle.seed(SEED)
L
Leo Chen 已提交
572
        paddle.framework.random._manual_program_seed(SEED)
573 574 575 576 577 578 579 580 581 582 583 584 585

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

586 587
        output_spec = [hidden]
        paddle.jit.save(
588
            layer=train_layer,
589
            path=self.model_path,
590
            input_spec=[x],
591
            output_spec=output_spec)
592 593 594 595 596 597 598

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

599
        infer_layer = paddle.jit.load(self.model_path)
600 601 602 603 604 605 606 607 608 609

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
610
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
611 612 613 614 615 616 617
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
618
            paddle.jit.load(self.model_path)
619 620


621 622 623 624 625
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
626
        paddle.seed(SEED)
627 628 629 630 631 632 633
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
634
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
635
        if with_label:
Z
Zhou Wei 已提交
636
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

652
        model_path = "test_no_prune_to_static_after_train/model"
653 654 655 656 657 658 659
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

660
        model_path = "test_no_prune_to_static_no_train/model"
661 662 663 664 665 666 667 668 669
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

670
        model_path = "test_no_prune_no_to_static_after_train/model"
671 672 673 674 675 676 677 678 679 680 681 682 683
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

684 685
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
686 687 688 689 690 691

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

692
        model_path = "test_no_prune_no_to_static_no_train/model"
693 694 695 696 697 698 699 700 701 702 703 704 705
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

706
        model_path = "test_prune_to_static_after_train/model"
707 708 709 710 711 712 713
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
714
            output_spec=[out])
715 716 717 718 719 720

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

721
        model_path = "test_prune_to_static_no_train/model"
722 723
        # TODO: no train, cannot get output_spec var here
        # now only can use index
724
        output_spec = layer.forward.outputs[:1]
725 726 727 728 729 730 731
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
732
            output_spec=output_spec)
733 734 735 736 737 738 739 740

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

741
        model_path = "test_no_prune_input_spec_name_warning/model"
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

762
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
763
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
764
        paddle.jit.save(layer, model_path, output_spec=[out])
765 766 767 768 769 770

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

771
        model_path = "test_prune_input_spec_name_error/model"
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

792
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
793
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
794 795 796 797 798 799 800 801
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
802
                output_spec=[out])
803 804


805 806
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
807
        self.model_path = "jit_save_load_empty_layer/model"
808 809 810 811 812
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
813
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
814 815 816 817 818 819 820 821 822
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
823
        self.model_path = "jit_save_load_no_param_layer/model"
824 825 826 827 828
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
829 830
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
831 832 833 834 835 836 837
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])


W
WeiXin 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
class LayerSaved(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


class LayerLoadFinetune(paddle.nn.Layer):
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_finetune_load/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
class TestJitSaveLoadDataParallel(unittest.TestCase):
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_inputspec/model"
        paddle.jit.save(
            layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])])

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_to_static/model"
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


989 990
if __name__ == '__main__':
    unittest.main()