test_jit_save_load.py 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23
import paddle.fluid as fluid
24
from paddle.fluid.layers.utils import flatten
25
from paddle.fluid.dygraph import Linear
26
from paddle.fluid.dygraph import declarative, ProgramTranslator
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
28 29

BATCH_SIZE = 32
30
BATCH_NUM = 10
31 32 33
SEED = 10


34 35
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
36
        np.random.seed(SEED)
37 38 39
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
40 41 42

    def __reader__():
        for _ in range(BATCH_NUM):
43 44 45
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
46 47 48 49 50 51 52 53 54 55 56 57 58 59

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


60 61 62 63 64 65 66 67 68 69
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


70 71 72 73 74 75 76 77 78
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


96 97 98 99 100 101 102 103 104 105 106 107 108
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
131 132
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


190
def train(layer, input_size=784, label_size=1):
191
    # create optimizer
L
Leo Chen 已提交
192
    sgd = fluid.optimizer.SGDOptimizer(
193
        learning_rate=0.01, parameter_list=layer.parameters())
194 195
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
196 197
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
198 199 200 201 202 203 204 205 206 207 208
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
209
        sgd.minimize(avg_loss)
210 211 212 213
        layer.clear_gradients()
    return [img], layer, avg_loss


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


235 236
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
237
        self.model_path = "test_jit_save_load/model"
238 239 240
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
241
        paddle.seed(SEED)
L
Leo Chen 已提交
242
        paddle.framework.random._manual_program_seed(SEED)
243

244
    def train_and_save_model(self, model_path=None):
245 246
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
247
        final_model_path = model_path if model_path else self.model_path
248
        orig_input_types = [type(x) for x in example_inputs]
249 250
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
251 252
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
253 254
        return layer

255
    def test_save_load(self):
256 257 258
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
259
        loaded_layer = paddle.jit.load(self.model_path)
260 261 262 263 264
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
265
        train_layer.eval()
266
        infer_layer.eval()
267 268 269 270 271 272
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

273 274
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
275 276
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
277 278
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
279 280 281
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

282 283
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
284
        # construct new model
285
        new_layer = LinearNet(784, 1)
286
        orig_state_dict = new_layer.state_dict()
287
        load_state_dict = paddle.load(self.model_path)
288 289 290
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
291 292 293 294 295 296 297
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

298
    def test_load_dygraph_no_path(self):
299
        model_path = "test_jit_save_load.no_path/model_path"
300 301 302
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

303
    def test_jit_load_model_incomplete(self):
304 305 306 307
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
308 309 310 311
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

312 313 314 315 316
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


342 343 344 345 346 347 348 349 350 351 352 353
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

354
        model_path = "input_spec.output_spec/model"
355 356 357 358 359 360 361
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
362 363
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
364 365

        # 2. load to infer
366
        infer_layer = paddle.jit.load(model_path)
367 368 369 370 371 372 373
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

374
        model_path = "multi_inout.output_spec1/model"
375 376 377 378 379 380 381 382
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
383 384
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
385 386

        # 3. load to infer
387
        infer_layer = paddle.jit.load(model_path)
388 389 390 391 392 393 394 395
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
396 397 398
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
399
        # 2. load again
400
        infer_layer2 = paddle.jit.load(model_path)
401 402 403 404 405 406 407
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


408 409 410 411 412
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
413
        paddle.seed(SEED)
L
Leo Chen 已提交
414
        paddle.framework.random._manual_program_seed(SEED)
415 416 417 418 419 420 421 422 423 424 425 426 427

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

428 429 430
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
431
            layer=train_layer,
432
            path=model_path,
433
            input_spec=[x],
434
            output_spec=output_spec)
435 436

        train_layer.eval()
437
        infer_layer = paddle.jit.load(model_path)
438 439 440 441 442
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

464

465 466 467
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
468
        self.model_path = "jit_multi_load/model"
469 470 471
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
472
        paddle.seed(SEED)
L
Leo Chen 已提交
473
        paddle.framework.random._manual_program_seed(SEED)
474 475 476 477 478 479
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
480 481
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
482 483 484 485 486 487 488 489 490 491 492

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


493 494 495
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
496
        self.model_path = "jit_prune_model_and_load/model"
497 498 499
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
500
        paddle.seed(SEED)
L
Leo Chen 已提交
501
        paddle.framework.random._manual_program_seed(SEED)
502 503 504 505 506 507 508 509 510 511 512 513 514

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

515 516
        output_spec = [hidden]
        paddle.jit.save(
517
            layer=train_layer,
518
            path=self.model_path,
519
            input_spec=[x],
520
            output_spec=output_spec)
521 522 523 524 525 526 527

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

528
        infer_layer = paddle.jit.load(self.model_path)
529 530 531 532 533 534 535 536 537 538

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
539
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
540 541 542 543 544 545 546
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
547
            paddle.jit.load(self.model_path)
548 549


550 551 552 553 554
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
555
        paddle.seed(SEED)
556 557 558 559 560 561 562
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
563
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
564
        if with_label:
Z
Zhou Wei 已提交
565
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

581
        model_path = "test_no_prune_to_static_after_train/model"
582 583 584 585 586 587 588
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

589
        model_path = "test_no_prune_to_static_no_train/model"
590 591 592 593 594 595 596 597 598
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

599
        model_path = "test_no_prune_no_to_static_after_train/model"
600 601 602 603 604 605 606 607 608 609 610 611 612
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

613 614
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
615 616 617 618 619 620

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

621
        model_path = "test_no_prune_no_to_static_no_train/model"
622 623 624 625 626 627 628 629 630 631 632 633 634
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

635
        model_path = "test_prune_to_static_after_train/model"
636 637 638 639 640 641 642
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
643
            output_spec=[out])
644 645 646 647 648 649

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

650
        model_path = "test_prune_to_static_no_train/model"
651 652
        # TODO: no train, cannot get output_spec var here
        # now only can use index
653
        output_spec = layer.forward.outputs[:1]
654 655 656 657 658 659 660
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
661
            output_spec=output_spec)
662 663 664 665 666 667 668 669

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

670
        model_path = "test_no_prune_input_spec_name_warning/model"
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

691
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
692
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
693
        paddle.jit.save(layer, model_path, output_spec=[out])
694 695 696 697 698 699

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

700
        model_path = "test_prune_input_spec_name_error/model"
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

721
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
722
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
723 724 725 726 727 728 729 730
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
731
                output_spec=[out])
732 733


734 735
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
736
        self.model_path = "jit_save_load_empty_layer/model"
737 738 739 740 741
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
742
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
743 744 745 746 747 748 749 750 751
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
752
        self.model_path = "jit_save_load_no_param_layer/model"
753 754 755 756 757
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
758 759
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
760 761 762 763 764 765 766
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


767 768
if __name__ == '__main__':
    unittest.main()