test_jit_save_load.py 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23 24
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
25
from paddle.fluid.dygraph import declarative, ProgramTranslator
26
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME
27 28

BATCH_SIZE = 32
29
BATCH_NUM = 10
30 31 32
SEED = 10


33 34
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
35
        np.random.seed(SEED)
36 37 38
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
39 40 41

    def __reader__():
        for _ in range(BATCH_NUM):
42 43 44
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


81
def train(layer, input_size=784, label_size=1):
82
    # create optimizer
L
Leo Chen 已提交
83
    sgd = fluid.optimizer.SGDOptimizer(
84
        learning_rate=0.01, parameter_list=layer.parameters())
85 86
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
87 88
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
89 90 91 92 93 94 95 96 97 98 99
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
100
        sgd.minimize(avg_loss)
101 102 103 104 105 106 107 108 109 110
        layer.clear_gradients()
    return [img], layer, avg_loss


class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.test_jit_save_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
111 112
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
113

114
    def train_and_save_model(self, model_path=None, configs=None):
115 116
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
117
        final_model_path = model_path if model_path else self.model_path
118
        orig_input_types = [type(x) for x in example_inputs]
119
        fluid.dygraph.jit.save(
120 121 122 123
            layer=layer,
            model_path=final_model_path,
            input_spec=example_inputs,
            configs=configs)
124 125
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
126 127
        return layer

128
    def test_save_load(self):
129 130 131
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
132 133 134 135 136 137 138 139 140
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        loaded_layer = fluid.dygraph.jit.load(self.model_path)
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)
        program_translator.enable(True)

    def load_and_inference(self, train_layer, infer_layer):
141
        train_layer.eval()
142
        infer_layer.eval()
143 144 145 146 147 148
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

149 150
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
151 152
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
153 154
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
155 156 157
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

158 159
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
160
        # construct new model
161 162 163 164 165 166 167 168 169 170
        new_layer = LinearNet(784, 1)
        model_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
        new_layer.set_dict(model_dict)
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

171 172 173 174 175 176 177 178 179
    def test_save_get_program_failed(self):
        layer = LinearNetNotDeclarative(784, 1)
        example_inputs, layer, _ = train(layer)
        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.save(
                layer=layer,
                model_path=self.model_path,
                input_spec=example_inputs)

180
    def test_load_dygraph_no_path(self):
181 182 183 184 185
        model_path = "model.test_jit_save_load.no_path"
        new_layer = LinearNet(784, 1)
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        # self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear1(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

        model_path = "model.input_spec.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 2. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

        model_path = "model.multi_inout.output_spec1"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        configs.output_spec = net.forward.outputs[:2]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 3. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
        model_path = "model.multi_inout.output_spec2"
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, [input_x], configs)
        # 2. load again
        infer_layer2 = fluid.dygraph.jit.load(model_path, configs=configs)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


273 274 275 276 277
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
278 279
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

    def basic_save_load(self, layer, model_path, configs):
        # 1. train & save
        example_inputs, train_layer, _ = train(layer)
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=example_inputs,
            configs=configs)
        # 2. load 
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        train_layer.eval()
        # 3. inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

    def test_model_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.model_filename = "__simplenet__"
        self.basic_save_load(layer, model_path, configs)

    def test_params_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.params_filename"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.basic_save_load(layer, model_path, configs)

    def test_separate_params(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.separate_params"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        self.basic_save_load(layer, model_path, configs)

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [out]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=[x],
            configs=configs)

        train_layer.eval()
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))


348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
        self._load_linear1 = fluid.dygraph.jit.load(model_path)
        self._load_linear2 = fluid.dygraph.jit.load(model_path)

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_multi_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
371 372
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
        fluid.dygraph.jit.save(
            layer=layer, model_path=self.model_path, input_spec=example_inputs)

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_prune_model_and_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
413 414
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [hidden]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=self.model_path,
            input_spec=[x],
            configs=configs)

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

        infer_layer = fluid.dygraph.jit.load(self.model_path)

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
        var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME)
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.load(self.model_path)


464 465
if __name__ == '__main__':
    unittest.main()