pd_op_to_kernel_pass.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#include "paddle/fluid/ir/pass/pd_op_to_kernel_pass.h"

#include "paddle/fluid/ir/dialect/kernel_attribute.h"
#include "paddle/fluid/ir/dialect/kernel_dialect.h"
#include "paddle/fluid/ir/dialect/kernel_op.h"
#include "paddle/fluid/ir/dialect/kernel_type.h"
23
#include "paddle/fluid/ir/dialect/op_yaml_info_util.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/ir/dialect/pd_attribute.h"
#include "paddle/fluid/ir/dialect/utils.h"
#include "paddle/fluid/ir/interface/op_yaml_info.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/kernel_factory.h"
namespace paddle {
namespace dialect {

phi::KernelKey GetKernelKey(
    ir::Operation* op,
    const phi::Place& place,
    const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) {
H
hong 已提交
38 39 40
  if (op->name() == "pd.feed") {
    return {phi::Backend::CPU, phi::DataLayout::ANY, phi::DataType::FLOAT32};
  }
H
hong 已提交
41 42 43 44
  phi::Backend kernel_backend = phi::Backend::UNDEFINED;
  phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED;
  phi::DataType kernel_data_type = phi::DataType::UNDEFINED;

45 46
  paddle::dialect::OpYamlInfoInterface op_info_interface =
      op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
47 48 49
  std::vector<paddle::dialect::OpInputInfo> input_info;
  if (op_info_interface) {
    auto op_info_res = op_info_interface.GetOpInfo();
50

H
hong 已提交
51
    input_info = std::get<0>(op_info_res);
52

H
hong 已提交
53 54 55 56 57 58 59
    // only suppurt non vector input for now
    std::map<std::string, int> input_map;
    int index = 0;
    int tensor_input_number = 0;
    for (auto& t : input_info) {
      // todo filter attribute tensor
      input_map[t.name] = index++;
H
hong 已提交
60

H
hong 已提交
61 62 63
      if (!t.is_mutable_attribute) {
        tensor_input_number += 1;
      }
H
hong 已提交
64
    }
65

H
hong 已提交
66 67 68 69 70 71 72
    std::map<std::string, std::string> attr_type_map;
    auto attr_info = std::get<1>(op_info_res);
    for (auto& t : attr_info) {
      VLOG(6) << t.name << "\t" << t.type_name;
      attr_type_map[t.name] = t.type_name;
    }
    auto runtime_info = std::get<3>(op_info_res);
73

H
hong 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    auto attr_map = op->attributes();
    auto data_type_info = runtime_info.kernel_key_dtype;
    if (data_type_info.size() > 0 && data_type_info[0] != "") {
      // only support single input and attribute
      auto slot_name = data_type_info[0];
      if (input_map.count(slot_name)) {
        // parse from input
        int in_index = input_map.at(slot_name);

        dialect::DenseTensorType type =
            op->operand(in_index)
                .source()
                .type()
                .dyn_cast<paddle::dialect::DenseTensorType>();
        kernel_data_type = TransToPhiDataType(type.dtype());
      } else {
        PADDLE_ENFORCE_EQ(attr_type_map.count(slot_name),
                          true,
                          phi::errors::PreconditionNotMet(
                              "[%s] MUST in attr map", slot_name));
        kernel_data_type = attr_map.at(slot_name)
                               .dyn_cast<paddle::dialect::DataTypeAttribute>()
                               .data();
      }
    }
99

H
hong 已提交
100 101 102 103
    // parse all the input tensor
    if (tensor_input_number == 0 || op->name() == "pd.full_") {
      // all the information have to get from attribute and context
      kernel_backend = paddle::experimental::ParseBackend(place);
104 105 106
    }
  }

H
hong 已提交
107
  if (op->num_operands() > 0) {
108 109
    paddle::experimental::detail::KernelKeyParser kernel_key_parser;

H
hong 已提交
110
    for (size_t i = 0; i < op->num_operands(); ++i) {
111
      // todo filter attribute tensor
H
hong 已提交
112
      if ((input_info.size() > i) && input_info[i].is_mutable_attribute) {
H
hong 已提交
113 114
        continue;
      }
K
kangguangli 已提交
115
      auto input_tmp = op->operand(i).source();
H
hong 已提交
116

117
      auto new_input_tmp = map_value_pair.at(input_tmp);
H
hong 已提交
118

H
hong 已提交
119 120 121 122 123 124 125 126
      auto input_type = new_input_tmp.type();
      dialect::AllocatedDenseTensorType type;
      if (input_type.isa<dialect::AllocatedDenseTensorType>()) {
        type = input_type.dyn_cast<dialect::AllocatedDenseTensorType>();
      } else if (input_type.isa<ir::VectorType>()) {
        type = input_type.dyn_cast<ir::VectorType>()[0]
                   .dyn_cast<dialect::AllocatedDenseTensorType>();
      }
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

      // fake tensor here
      auto ptr = new phi::Allocation(nullptr, 0, type.place());

      std::shared_ptr<phi::Allocation> holder(ptr);

      auto dtype = TransToPhiDataType(type.dtype());

      phi::DenseTensorMeta meta(
          dtype, type.dims(), type.data_layout(), type.lod(), type.offset());

      phi::DenseTensor fake_tensor(holder, meta);

      kernel_key_parser.AssignKernelKeySet(fake_tensor);
    }

    auto kernel_key_set = kernel_key_parser.key_set;

    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

    if (kernel_backend == phi::Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == phi::DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == phi::DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  phi::KernelKey res(kernel_backend, kernel_layout, kernel_data_type);
  return res;
}

std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
  auto program = std::make_unique<ir::Program>(ir::IrContext::Instance());

  auto block = prog->block();
  phi::Place cpu_place(phi::AllocationType::CPU);

  ir::IrContext* ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<paddle::dialect::PaddleKernelDialect>();

  std::unordered_map<ir::Operation*, ir::Operation*> map_op_pair;
  std::unordered_map<ir::Value, ir::OpResult> map_value_pair;

  std::string op1_name = paddle::dialect::PhiKernelOp::name();

  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);

  for (auto it = block->begin(); it != block->end(); ++it) {
H
hong 已提交
179
    VLOG(6) << "op name " << (*it)->name();
180
    auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair);
H
hong 已提交
181
    VLOG(6) << "kernel type " << kernel_key;
182 183 184 185 186
    // create new Op

    // only for single output
    // need update new kernel key layout and data tyep

187 188
    std::vector<ir::Type> op_output_types;
    if ((*it)->num_results() > 0) {
H
hong 已提交
189 190 191
      for (size_t i = 0; i < (*it)->num_results(); ++i) {
        auto result_type = (*it)->result(i).type();
        if (result_type.isa<dialect::DenseTensorType>()) {
H
hong 已提交
192 193 194 195
          auto allocated_dense_tensor_dtype =
              paddle::dialect::AllocatedDenseTensorType::get(
                  ctx,
                  phi::TransToPhiPlace(kernel_key.backend()),
H
hong 已提交
196
                  result_type.dyn_cast<dialect::DenseTensorType>());
H
hong 已提交
197
          op_output_types.push_back(allocated_dense_tensor_dtype);
H
hong 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        } else if (result_type.isa<ir::VectorType>()) {
          auto pos1 = result_type.dyn_cast<ir::VectorType>().data()[0];

          if (pos1.isa<dialect::DenseTensorType>()) {
            auto allocated_dense_tensor_dtype =
                paddle::dialect::AllocatedDenseTensorType::get(
                    ctx,
                    phi::TransToPhiPlace(kernel_key.backend()),
                    pos1.dyn_cast<dialect::DenseTensorType>());
            op_output_types.push_back(allocated_dense_tensor_dtype);
          } else {
            PADDLE_THROW(phi::errors::Unimplemented(
                "only support dense tensor in vector type for now"));
          }

          ir::Type t1 = ir::VectorType::get(ctx, op_output_types);
          op_output_types.clear();
          op_output_types.push_back(t1);
H
hong 已提交
216 217
        }
      }
218
    }
H
hong 已提交
219

220 221
    // constuct input
    std::vector<ir::OpResult> vec_inputs;
H
hong 已提交
222 223

    if ((*it)->name() != "pd.full" && (*it)->num_operands() > 0) {
224
      for (size_t i = 0; i < (*it)->num_operands(); ++i) {
K
kangguangli 已提交
225
        auto cur_in = (*it)->operand(i).source();
226 227 228 229 230 231 232 233
        auto new_in = map_value_pair.at(cur_in);

        vec_inputs.push_back(new_in);
      }
    }

    paddle::dialect::OpYamlInfoInterface op_info_interface =
        (*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
234 235 236 237 238 239
    std::string kernel_fn_str;
    if (op_info_interface) {
      auto op_info_res = op_info_interface.GetOpInfo();
      auto runtime_info = std::get<3>(op_info_res);
      kernel_fn_str = runtime_info.kernel_func[0];
    }
240 241 242

    std::unordered_map<std::string, ir::Attribute> op1_attribute{
        {"op_name", ir::StrAttribute::get(ctx, (*it)->name())},
H
hong 已提交
243
        {"kernel_name", ir::StrAttribute::get(ctx, kernel_fn_str)},
244 245 246 247 248 249 250 251 252
        {"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}};

    auto op_attr_map = (*it)->attributes();

    for (auto it1 = op_attr_map.begin(); it1 != op_attr_map.end(); ++it1) {
      op1_attribute.emplace(it1->first, it1->second);
    }

    ir::Operation* op1 = ir::Operation::Create(
253
        vec_inputs, op1_attribute, op_output_types, op1_info);
254 255

    map_op_pair[*it] = op1;
256 257 258

    // only deal with single output
    if ((*it)->num_results() > 0) {
H
hong 已提交
259 260 261
      for (size_t i = 0; i < (*it)->num_results(); ++i) {
        map_value_pair[(*it)->result(i)] = op1->result(i);
      }
262
    }
263 264 265 266 267 268 269 270 271

    program->block()->push_back(op1);
  }

  return program;
}

}  // namespace dialect
}  // namespace paddle