pd_op_to_kernel_pass.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#include "paddle/fluid/ir/pass/pd_op_to_kernel_pass.h"

#include "paddle/fluid/ir/dialect/kernel_attribute.h"
#include "paddle/fluid/ir/dialect/kernel_dialect.h"
#include "paddle/fluid/ir/dialect/kernel_op.h"
#include "paddle/fluid/ir/dialect/kernel_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
#include "paddle/fluid/ir/dialect/utils.h"
#include "paddle/fluid/ir/interface/op_yaml_info.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/kernel_factory.h"
namespace paddle {
namespace dialect {

phi::KernelKey GetKernelKey(
    ir::Operation* op,
    const phi::Place& place,
    const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) {
  paddle::dialect::OpYamlInfoInterface op_info_interface =
      op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
  auto op_info_res = op_info_interface.GetOpInfo();

  auto input_info = std::get<0>(op_info_res);

  // only suppurt non vector input for now
  std::map<std::string, int> input_map;
  int index = 0;
  for (auto& t : input_info) {
    // todo filter attribute tensor
    input_map[t.name] = index++;
  }

  std::map<std::string, std::string> attr_type_map;
  auto attr_info = std::get<1>(op_info_res);
  for (auto& t : attr_info) {
    VLOG(6) << t.name << "\t" << t.type_name;
    attr_type_map[t.name] = t.type_name;
  }
  auto runtime_info = std::get<3>(op_info_res);

  // get dtype infomation
  phi::Backend kernel_backend = phi::Backend::UNDEFINED;
  phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED;
  phi::DataType kernel_data_type = phi::DataType::UNDEFINED;

  auto attr_map = op->attributes();
  auto data_type_info = runtime_info.kernel_key_dtype;
  if (data_type_info.size() > 0 && data_type_info[0] != "") {
    // only support single input and attribute
    auto slot_name = data_type_info[0];
    if (input_map.count(slot_name)) {
      // parse from input
      int in_index = input_map.at(slot_name);

      dialect::AllocatedDenseTensorType type =
K
kangguangli 已提交
74
          op->operand(in_index)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
              .source()
              .type()
              .dyn_cast<paddle::dialect::AllocatedDenseTensorType>();
      kernel_data_type = type.dyn_cast<dialect::DataTypeAttribute>().data();
    } else {
      PADDLE_ENFORCE_EQ(
          attr_type_map.count(slot_name),
          true,
          phi::errors::PreconditionNotMet("[%s] MUST in attr map", slot_name));
      kernel_data_type = attr_map.at(slot_name)
                             .dyn_cast<paddle::dialect::DataTypeAttribute>()
                             .data();
    }
  }

  // parse all the input tensor

  if (input_map.size() == 0 || op->name() == "pd.full_") {
    // all the information have to get from attribute and context
    kernel_backend = paddle::experimental::ParseBackend(place);

  } else {
    paddle::experimental::detail::KernelKeyParser kernel_key_parser;

    for (size_t i = 0; i < input_info.size(); ++i) {
      // todo filter attribute tensor
K
kangguangli 已提交
101
      auto input_tmp = op->operand(i).source();
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      auto new_input_tmp = map_value_pair.at(input_tmp);
      dialect::AllocatedDenseTensorType type =
          new_input_tmp.type().dyn_cast<dialect::AllocatedDenseTensorType>();

      // fake tensor here
      auto ptr = new phi::Allocation(nullptr, 0, type.place());

      std::shared_ptr<phi::Allocation> holder(ptr);

      auto dtype = TransToPhiDataType(type.dtype());

      phi::DenseTensorMeta meta(
          dtype, type.dims(), type.data_layout(), type.lod(), type.offset());

      phi::DenseTensor fake_tensor(holder, meta);

      kernel_key_parser.AssignKernelKeySet(fake_tensor);
    }

    auto kernel_key_set = kernel_key_parser.key_set;

    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

    if (kernel_backend == phi::Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == phi::DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == phi::DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  phi::KernelKey res(kernel_backend, kernel_layout, kernel_data_type);
  return res;
}

std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
  auto program = std::make_unique<ir::Program>(ir::IrContext::Instance());

  auto block = prog->block();
  phi::Place cpu_place(phi::AllocationType::CPU);

  ir::IrContext* ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<paddle::dialect::PaddleKernelDialect>();

  std::unordered_map<ir::Operation*, ir::Operation*> map_op_pair;
  std::unordered_map<ir::Value, ir::OpResult> map_value_pair;

  std::string op1_name = paddle::dialect::PhiKernelOp::name();

  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);

  for (auto it = block->begin(); it != block->end(); ++it) {
    auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair);

    // create new Op

    // only for single output
    // need update new kernel key layout and data tyep
    auto allocated_dense_tensor_dtype =
        paddle::dialect::AllocatedDenseTensorType::get(
            ctx,
            phi::TransToPhiPlace(kernel_key.backend()),
K
kangguangli 已提交
167
            (*it)->result(0).type().dyn_cast<dialect::DenseTensorType>());
168 169 170 171 172

    // constuct input
    std::vector<ir::OpResult> vec_inputs;
    if ((*it)->name() != "pd.full_" && (*it)->num_operands() > 0) {
      for (size_t i = 0; i < (*it)->num_operands(); ++i) {
K
kangguangli 已提交
173
        auto cur_in = (*it)->operand(i).source();
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        auto new_in = map_value_pair.at(cur_in);

        vec_inputs.push_back(new_in);
      }
    }

    paddle::dialect::OpYamlInfoInterface op_info_interface =
        (*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
    auto op_info_res = op_info_interface.GetOpInfo();
    auto runtime_info = std::get<3>(op_info_res);

    std::unordered_map<std::string, ir::Attribute> op1_attribute{
        {"op_name", ir::StrAttribute::get(ctx, (*it)->name())},
        {"kernel_name",
         ir::StrAttribute::get(ctx, runtime_info.kernel_func[0])},
        {"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}};

    auto op_attr_map = (*it)->attributes();

    for (auto it1 = op_attr_map.begin(); it1 != op_attr_map.end(); ++it1) {
      op1_attribute.emplace(it1->first, it1->second);
    }

    ir::Operation* op1 = ir::Operation::Create(
        vec_inputs, op1_attribute, {allocated_dense_tensor_dtype}, op1_info);

    map_op_pair[*it] = op1;
K
kangguangli 已提交
201
    map_value_pair[(*it)->result(0)] = op1->result(0);
202 203 204 205 206 207 208 209 210

    program->block()->push_back(op1);
  }

  return program;
}

}  // namespace dialect
}  // namespace paddle