pd_op_to_kernel_pass.cc 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#include "paddle/fluid/ir/pass/pd_op_to_kernel_pass.h"

#include "paddle/fluid/ir/dialect/kernel_attribute.h"
#include "paddle/fluid/ir/dialect/kernel_dialect.h"
#include "paddle/fluid/ir/dialect/kernel_op.h"
#include "paddle/fluid/ir/dialect/kernel_type.h"
23
#include "paddle/fluid/ir/dialect/op_yaml_info_util.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/ir/dialect/pd_attribute.h"
#include "paddle/fluid/ir/dialect/utils.h"
#include "paddle/fluid/ir/interface/op_yaml_info.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/kernel_factory.h"
namespace paddle {
namespace dialect {

phi::KernelKey GetKernelKey(
    ir::Operation* op,
    const phi::Place& place,
    const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) {
H
hong 已提交
38 39 40 41
  phi::Backend kernel_backend = phi::Backend::UNDEFINED;
  phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED;
  phi::DataType kernel_data_type = phi::DataType::UNDEFINED;

42 43
  paddle::dialect::OpYamlInfoInterface op_info_interface =
      op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
44 45 46
  std::vector<paddle::dialect::OpInputInfo> input_info;
  if (op_info_interface) {
    auto op_info_res = op_info_interface.GetOpInfo();
47

H
hong 已提交
48
    input_info = std::get<0>(op_info_res);
49

H
hong 已提交
50 51 52 53 54 55 56
    // only suppurt non vector input for now
    std::map<std::string, int> input_map;
    int index = 0;
    int tensor_input_number = 0;
    for (auto& t : input_info) {
      // todo filter attribute tensor
      input_map[t.name] = index++;
H
hong 已提交
57

H
hong 已提交
58 59 60
      if (!t.is_mutable_attribute) {
        tensor_input_number += 1;
      }
H
hong 已提交
61
    }
62

H
hong 已提交
63 64 65 66 67 68 69
    std::map<std::string, std::string> attr_type_map;
    auto attr_info = std::get<1>(op_info_res);
    for (auto& t : attr_info) {
      VLOG(6) << t.name << "\t" << t.type_name;
      attr_type_map[t.name] = t.type_name;
    }
    auto runtime_info = std::get<3>(op_info_res);
70

H
hong 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto attr_map = op->attributes();
    auto data_type_info = runtime_info.kernel_key_dtype;
    if (data_type_info.size() > 0 && data_type_info[0] != "") {
      // only support single input and attribute
      auto slot_name = data_type_info[0];
      if (input_map.count(slot_name)) {
        // parse from input
        int in_index = input_map.at(slot_name);

        dialect::DenseTensorType type =
            op->operand(in_index)
                .source()
                .type()
                .dyn_cast<paddle::dialect::DenseTensorType>();
        kernel_data_type = TransToPhiDataType(type.dtype());
      } else {
        PADDLE_ENFORCE_EQ(attr_type_map.count(slot_name),
                          true,
                          phi::errors::PreconditionNotMet(
                              "[%s] MUST in attr map", slot_name));
        kernel_data_type = attr_map.at(slot_name)
                               .dyn_cast<paddle::dialect::DataTypeAttribute>()
                               .data();
      }
    }
96

H
hong 已提交
97 98 99 100
    // parse all the input tensor
    if (tensor_input_number == 0 || op->name() == "pd.full_") {
      // all the information have to get from attribute and context
      kernel_backend = paddle::experimental::ParseBackend(place);
101 102 103
    }
  }

H
hong 已提交
104
  if (op->num_operands() > 0) {
105 106
    paddle::experimental::detail::KernelKeyParser kernel_key_parser;

H
hong 已提交
107
    for (size_t i = 0; i < op->num_operands(); ++i) {
108
      // todo filter attribute tensor
H
hong 已提交
109
      if ((input_info.size() > i) && input_info[i].is_mutable_attribute) {
H
hong 已提交
110 111
        continue;
      }
K
kangguangli 已提交
112
      auto input_tmp = op->operand(i).source();
113
      auto new_input_tmp = map_value_pair.at(input_tmp);
H
hong 已提交
114 115 116 117 118 119 120 121
      auto input_type = new_input_tmp.type();
      dialect::AllocatedDenseTensorType type;
      if (input_type.isa<dialect::AllocatedDenseTensorType>()) {
        type = input_type.dyn_cast<dialect::AllocatedDenseTensorType>();
      } else if (input_type.isa<ir::VectorType>()) {
        type = input_type.dyn_cast<ir::VectorType>()[0]
                   .dyn_cast<dialect::AllocatedDenseTensorType>();
      }
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

      // fake tensor here
      auto ptr = new phi::Allocation(nullptr, 0, type.place());

      std::shared_ptr<phi::Allocation> holder(ptr);

      auto dtype = TransToPhiDataType(type.dtype());

      phi::DenseTensorMeta meta(
          dtype, type.dims(), type.data_layout(), type.lod(), type.offset());

      phi::DenseTensor fake_tensor(holder, meta);

      kernel_key_parser.AssignKernelKeySet(fake_tensor);
    }

    auto kernel_key_set = kernel_key_parser.key_set;

    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

    if (kernel_backend == phi::Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == phi::DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == phi::DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  phi::KernelKey res(kernel_backend, kernel_layout, kernel_data_type);
  return res;
}

std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
  auto program = std::make_unique<ir::Program>(ir::IrContext::Instance());

  auto block = prog->block();
  phi::Place cpu_place(phi::AllocationType::CPU);

  ir::IrContext* ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<paddle::dialect::PaddleKernelDialect>();

  std::unordered_map<ir::Operation*, ir::Operation*> map_op_pair;
  std::unordered_map<ir::Value, ir::OpResult> map_value_pair;

  std::string op1_name = paddle::dialect::PhiKernelOp::name();

  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);

  for (auto it = block->begin(); it != block->end(); ++it) {
H
hong 已提交
174
    VLOG(6) << "op name " << (*it)->name();
175
    auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair);
H
hong 已提交
176
    VLOG(6) << "kernel type " << kernel_key;
177 178 179 180 181
    // create new Op

    // only for single output
    // need update new kernel key layout and data tyep

182 183
    std::vector<ir::Type> op_output_types;
    if ((*it)->num_results() > 0) {
H
hong 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      auto result_type = (*it)->result(0).type();
      if (result_type.isa<dialect::DenseTensorType>()) {
        auto allocated_dense_tensor_dtype =
            paddle::dialect::AllocatedDenseTensorType::get(
                ctx,
                phi::TransToPhiPlace(kernel_key.backend()),
                result_type.dyn_cast<dialect::DenseTensorType>());
        op_output_types.push_back(allocated_dense_tensor_dtype);
      } else if (result_type.isa<ir::VectorType>()) {
        auto pos1 = result_type.dyn_cast<ir::VectorType>().data()[0];

        if (pos1.isa<dialect::DenseTensorType>()) {
          auto allocated_dense_tensor_dtype =
              paddle::dialect::AllocatedDenseTensorType::get(
                  ctx,
                  phi::TransToPhiPlace(kernel_key.backend()),
                  pos1.dyn_cast<dialect::DenseTensorType>());
          op_output_types.push_back(allocated_dense_tensor_dtype);
        } else {
          PADDLE_THROW(phi::errors::Unimplemented(
              "only support dense tensor in vector type for now"));
        }

        ir::Type t1 = ir::VectorType::get(ctx, op_output_types);
        op_output_types.clear();
        op_output_types.push_back(t1);
      }
211
    }
H
hong 已提交
212

213 214
    // constuct input
    std::vector<ir::OpResult> vec_inputs;
H
hong 已提交
215 216

    if ((*it)->name() != "pd.full" && (*it)->num_operands() > 0) {
217
      for (size_t i = 0; i < (*it)->num_operands(); ++i) {
K
kangguangli 已提交
218
        auto cur_in = (*it)->operand(i).source();
219 220 221 222 223 224 225 226
        auto new_in = map_value_pair.at(cur_in);

        vec_inputs.push_back(new_in);
      }
    }

    paddle::dialect::OpYamlInfoInterface op_info_interface =
        (*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
227 228 229 230 231 232
    std::string kernel_fn_str;
    if (op_info_interface) {
      auto op_info_res = op_info_interface.GetOpInfo();
      auto runtime_info = std::get<3>(op_info_res);
      kernel_fn_str = runtime_info.kernel_func[0];
    }
233 234 235

    std::unordered_map<std::string, ir::Attribute> op1_attribute{
        {"op_name", ir::StrAttribute::get(ctx, (*it)->name())},
H
hong 已提交
236
        {"kernel_name", ir::StrAttribute::get(ctx, kernel_fn_str)},
237 238 239 240 241 242 243 244 245
        {"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}};

    auto op_attr_map = (*it)->attributes();

    for (auto it1 = op_attr_map.begin(); it1 != op_attr_map.end(); ++it1) {
      op1_attribute.emplace(it1->first, it1->second);
    }

    ir::Operation* op1 = ir::Operation::Create(
246
        vec_inputs, op1_attribute, op_output_types, op1_info);
247 248

    map_op_pair[*it] = op1;
249 250 251 252 253

    // only deal with single output
    if ((*it)->num_results() > 0) {
      map_value_pair[(*it)->result(0)] = op1->result(0);
    }
254 255 256 257 258 259 260 261 262

    program->block()->push_back(op1);
  }

  return program;
}

}  // namespace dialect
}  // namespace paddle