pd_op_to_kernel_pass.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#include "paddle/fluid/ir/pass/pd_op_to_kernel_pass.h"

#include "paddle/fluid/ir/dialect/kernel_attribute.h"
#include "paddle/fluid/ir/dialect/kernel_dialect.h"
#include "paddle/fluid/ir/dialect/kernel_op.h"
#include "paddle/fluid/ir/dialect/kernel_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
#include "paddle/fluid/ir/dialect/utils.h"
#include "paddle/fluid/ir/interface/op_yaml_info.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/kernel_factory.h"
namespace paddle {
namespace dialect {

phi::KernelKey GetKernelKey(
    ir::Operation* op,
    const phi::Place& place,
    const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) {
H
hong 已提交
37 38 39 40
  phi::Backend kernel_backend = phi::Backend::UNDEFINED;
  phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED;
  phi::DataType kernel_data_type = phi::DataType::UNDEFINED;

41 42
  paddle::dialect::OpYamlInfoInterface op_info_interface =
      op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
43 44 45
  std::vector<paddle::dialect::OpInputInfo> input_info;
  if (op_info_interface) {
    auto op_info_res = op_info_interface.GetOpInfo();
46

H
hong 已提交
47
    input_info = std::get<0>(op_info_res);
48

H
hong 已提交
49 50 51 52 53 54 55
    // only suppurt non vector input for now
    std::map<std::string, int> input_map;
    int index = 0;
    int tensor_input_number = 0;
    for (auto& t : input_info) {
      // todo filter attribute tensor
      input_map[t.name] = index++;
H
hong 已提交
56

H
hong 已提交
57 58 59
      if (!t.is_mutable_attribute) {
        tensor_input_number += 1;
      }
H
hong 已提交
60
    }
61

H
hong 已提交
62 63 64 65 66 67 68
    std::map<std::string, std::string> attr_type_map;
    auto attr_info = std::get<1>(op_info_res);
    for (auto& t : attr_info) {
      VLOG(6) << t.name << "\t" << t.type_name;
      attr_type_map[t.name] = t.type_name;
    }
    auto runtime_info = std::get<3>(op_info_res);
69

H
hong 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    auto attr_map = op->attributes();
    auto data_type_info = runtime_info.kernel_key_dtype;
    if (data_type_info.size() > 0 && data_type_info[0] != "") {
      // only support single input and attribute
      auto slot_name = data_type_info[0];
      if (input_map.count(slot_name)) {
        // parse from input
        int in_index = input_map.at(slot_name);

        dialect::DenseTensorType type =
            op->operand(in_index)
                .source()
                .type()
                .dyn_cast<paddle::dialect::DenseTensorType>();
        kernel_data_type = TransToPhiDataType(type.dtype());
      } else {
        PADDLE_ENFORCE_EQ(attr_type_map.count(slot_name),
                          true,
                          phi::errors::PreconditionNotMet(
                              "[%s] MUST in attr map", slot_name));
        kernel_data_type = attr_map.at(slot_name)
                               .dyn_cast<paddle::dialect::DataTypeAttribute>()
                               .data();
      }
    }
95

H
hong 已提交
96 97 98 99
    // parse all the input tensor
    if (tensor_input_number == 0 || op->name() == "pd.full_") {
      // all the information have to get from attribute and context
      kernel_backend = paddle::experimental::ParseBackend(place);
100 101 102
    }
  }

H
hong 已提交
103
  if (op->num_operands() > 0) {
104 105
    paddle::experimental::detail::KernelKeyParser kernel_key_parser;

H
hong 已提交
106
    for (size_t i = 0; i < op->num_operands(); ++i) {
107
      // todo filter attribute tensor
H
hong 已提交
108
      if ((input_info.size() > i) && input_info[i].is_mutable_attribute) {
H
hong 已提交
109 110
        continue;
      }
K
kangguangli 已提交
111
      auto input_tmp = op->operand(i).source();
112
      auto new_input_tmp = map_value_pair.at(input_tmp);
H
hong 已提交
113 114 115 116 117 118 119 120
      auto input_type = new_input_tmp.type();
      dialect::AllocatedDenseTensorType type;
      if (input_type.isa<dialect::AllocatedDenseTensorType>()) {
        type = input_type.dyn_cast<dialect::AllocatedDenseTensorType>();
      } else if (input_type.isa<ir::VectorType>()) {
        type = input_type.dyn_cast<ir::VectorType>()[0]
                   .dyn_cast<dialect::AllocatedDenseTensorType>();
      }
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

      // fake tensor here
      auto ptr = new phi::Allocation(nullptr, 0, type.place());

      std::shared_ptr<phi::Allocation> holder(ptr);

      auto dtype = TransToPhiDataType(type.dtype());

      phi::DenseTensorMeta meta(
          dtype, type.dims(), type.data_layout(), type.lod(), type.offset());

      phi::DenseTensor fake_tensor(holder, meta);

      kernel_key_parser.AssignKernelKeySet(fake_tensor);
    }

    auto kernel_key_set = kernel_key_parser.key_set;

    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

    if (kernel_backend == phi::Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == phi::DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == phi::DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  phi::KernelKey res(kernel_backend, kernel_layout, kernel_data_type);
  return res;
}

std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
  auto program = std::make_unique<ir::Program>(ir::IrContext::Instance());

  auto block = prog->block();
  phi::Place cpu_place(phi::AllocationType::CPU);

  ir::IrContext* ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<paddle::dialect::PaddleKernelDialect>();

  std::unordered_map<ir::Operation*, ir::Operation*> map_op_pair;
  std::unordered_map<ir::Value, ir::OpResult> map_value_pair;

  std::string op1_name = paddle::dialect::PhiKernelOp::name();

  ir::OpInfo op1_info = ctx->GetRegisteredOpInfo(op1_name);

  for (auto it = block->begin(); it != block->end(); ++it) {
H
hong 已提交
173
    VLOG(6) << "op name " << (*it)->name();
174
    auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair);
H
hong 已提交
175
    VLOG(6) << "kernel type " << kernel_key;
176 177 178 179 180
    // create new Op

    // only for single output
    // need update new kernel key layout and data tyep

181 182
    std::vector<ir::Type> op_output_types;
    if ((*it)->num_results() > 0) {
H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      auto result_type = (*it)->result(0).type();
      if (result_type.isa<dialect::DenseTensorType>()) {
        auto allocated_dense_tensor_dtype =
            paddle::dialect::AllocatedDenseTensorType::get(
                ctx,
                phi::TransToPhiPlace(kernel_key.backend()),
                result_type.dyn_cast<dialect::DenseTensorType>());
        op_output_types.push_back(allocated_dense_tensor_dtype);
      } else if (result_type.isa<ir::VectorType>()) {
        auto pos1 = result_type.dyn_cast<ir::VectorType>().data()[0];

        if (pos1.isa<dialect::DenseTensorType>()) {
          auto allocated_dense_tensor_dtype =
              paddle::dialect::AllocatedDenseTensorType::get(
                  ctx,
                  phi::TransToPhiPlace(kernel_key.backend()),
                  pos1.dyn_cast<dialect::DenseTensorType>());
          op_output_types.push_back(allocated_dense_tensor_dtype);
        } else {
          PADDLE_THROW(phi::errors::Unimplemented(
              "only support dense tensor in vector type for now"));
        }

        ir::Type t1 = ir::VectorType::get(ctx, op_output_types);
        op_output_types.clear();
        op_output_types.push_back(t1);
      }
210
    }
H
hong 已提交
211

212 213
    // constuct input
    std::vector<ir::OpResult> vec_inputs;
H
hong 已提交
214 215

    if ((*it)->name() != "pd.full" && (*it)->num_operands() > 0) {
216
      for (size_t i = 0; i < (*it)->num_operands(); ++i) {
K
kangguangli 已提交
217
        auto cur_in = (*it)->operand(i).source();
218 219 220 221 222 223 224 225
        auto new_in = map_value_pair.at(cur_in);

        vec_inputs.push_back(new_in);
      }
    }

    paddle::dialect::OpYamlInfoInterface op_info_interface =
        (*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
H
hong 已提交
226 227 228 229 230 231
    std::string kernel_fn_str;
    if (op_info_interface) {
      auto op_info_res = op_info_interface.GetOpInfo();
      auto runtime_info = std::get<3>(op_info_res);
      kernel_fn_str = runtime_info.kernel_func[0];
    }
232 233 234

    std::unordered_map<std::string, ir::Attribute> op1_attribute{
        {"op_name", ir::StrAttribute::get(ctx, (*it)->name())},
H
hong 已提交
235
        {"kernel_name", ir::StrAttribute::get(ctx, kernel_fn_str)},
236 237 238 239 240 241 242 243 244
        {"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}};

    auto op_attr_map = (*it)->attributes();

    for (auto it1 = op_attr_map.begin(); it1 != op_attr_map.end(); ++it1) {
      op1_attribute.emplace(it1->first, it1->second);
    }

    ir::Operation* op1 = ir::Operation::Create(
245
        vec_inputs, op1_attribute, op_output_types, op1_info);
246 247

    map_op_pair[*it] = op1;
248 249 250 251 252

    // only deal with single output
    if ((*it)->num_results() > 0) {
      map_value_pair[(*it)->result(0)] = op1->result(0);
    }
253 254 255 256 257 258 259 260 261

    program->block()->push_back(op1);
  }

  return program;
}

}  // namespace dialect
}  // namespace paddle