svd_helper.h 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17 18 19 20 21 22 23
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
24 25 26
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
27 28
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
29
#include "paddle/pten/kernels/funcs/blas/blas.h"
30
#include "paddle/pten/kernels/funcs/complex_functors.h"
31
#include "paddle/pten/kernels/funcs/math_function.h"
32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;
40 41 42
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

template <typename T>
void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
              int full = false) {
  auto flag = Eigen::DecompositionOptions::ComputeThinU |
              Eigen::DecompositionOptions::ComputeThinV;
  if (full) {
    flag = Eigen::DecompositionOptions::ComputeFullU |
           Eigen::DecompositionOptions::ComputeFullV;
  }
  Eigen::BDCSVD<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
      svd(2, 2, flag);
  /*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/
  T* input = const_cast<T*>(X);
  auto m = Eigen::Map<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
      input, rows, cols);
  svd.compute(m);
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans =
      svd.matrixV().transpose();
  memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T));
  memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T));
  memcpy(S, svd.singularValues().data(),
         svd.singularValues().size() * sizeof(T));
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
              int full = false) {
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
    EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
                rows, cols, full);
  }
  return;
}

template <typename T>
struct PowFunctor {
86
  PowFunctor(const T* input, T* output, int64_t numel, T exp)
87 88 89 90 91 92 93 94
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
95
  T exp_;
96 97
};

L
Lijunhui 已提交
98 99 100 101 102 103 104 105 106 107
template <typename T>
struct RealMulComplexFunctor {
  // x: complex number (a+bj)
  // y: complex number (c+0j) pretend to be a real number
  // out: complex number (ac+bcj)
  inline HOSTDEVICE T operator()(T x, T y) {
    PADDLE_ENFORCE_LT(y.imag, 1e-6, platform::errors::InvalidArgument(
                                        "The image part of y must to be 0"
                                        "but got [%d]",
                                        y.imag));
108 109
    return platform::complex<pten::funcs::Real<T>>(x.real * y.real,
                                                   x.imag * y.real);
L
Lijunhui 已提交
110 111 112
  }
};

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static std::vector<int> GetBroadcastShape(InTensors ins) {
  PADDLE_ENFORCE_EQ(ins.size(), 2, platform::errors::InvalidArgument(
                                       "GetBroadcastShape Receive 2 tensors"
                                       "but got [%d]",
                                       ins.size()));
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
      (x_dim.size() > y_dim.size() ? framework::vectorize<int>(x_dim)
                                   : framework::vectorize<int>(y_dim));
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
        x_dim, y_dim));
  }
  return broadcast_shape;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static inline framework::DDim ComputeAndCheckShapeForConcatOp(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
    const size_t axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(), out_dims.size(),
                      platform::errors::InvalidArgument(
                          "The shape of input[0] and input[%d] "
                          "is expected to be equal."
                          "But received input[0]'s shape = "
                          "[%s], input[%d]'s shape = [%s].",
                          i, inputs_dims[0], i, inputs_dims[i]));
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
          PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j],
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
                                j, i, inputs_dims[0], i, inputs_dims[i]));
        }
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
      }
    }
  }
  return out_dims;
}

static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) {
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

// Prepared for the broadcast operation
static std::vector<int64_t> get_broadcast_batch_portion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
        (x_size == y_size || x_size == 1 || y_size == 1), true,
        platform::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
            x_size, y_size, i));

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

236 237 238 239 240
#define DITO_TRANSPOSE_RANK_CASE(N)                    \
  case N: {                                            \
    pten::funcs::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);                     \
    break;                                             \
241 242 243 244 245 246 247 248
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
template <typename T, typename ValueType>
struct DiagAndFillFunctor {
  DiagAndFillFunctor(const int m, const int n, const int num_lower_diags,
                     const int num_upper_diags, const ValueType* scale,
                     const T* input, T* output)
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        scale_(scale),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = input_[index];
    } else if (col == band_end - 1) {
      output_[index] = static_cast<T>(scale_[index % m_]);
    } else {
      output_[index] = input_[index];
    }
  }

 private:
  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const ValueType* scale_;
  const T* input_;
  T* output_;
};

template <typename DeviceContext, typename T, typename ValueType = T>
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

300
  framework::Tensor Pow(const framework::Tensor& x, T exp) {
301 302 303 304 305 306 307 308 309 310 311
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
    PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
                          numel, exp);
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
                           const framework::Tensor& mat_b, bool trans_a = false,
                           bool trans_b = false) {
312
    framework::Tensor ret;
313 314 315 316 317
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
    std::vector<int> x_vec = framework::vectorize<int>(a_dim);
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
318 319 320
    ret.Resize(framework::make_ddim(x_vec));
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
321 322
    auto mat_a_discrib = pten::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = pten::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b);
323 324 325
    blas.MatMul(mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret,
                T(0.0));
    return ret;
326
  }
327

328
  framework::Tensor Transpose(const framework::Tensor& x) {
329 330
    // transpose the last two dimision
    framework::Tensor ret;
331 332 333 334 335 336 337 338 339 340
    auto x_dim = x.dims();
    auto x_vec = framework::vectorize<int>(x_dim);
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    auto& dev_ctx = context.template device_context<DeviceContext>();
    ret.Resize(framework::make_ddim(x_vec));
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
357 358
  }
  framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
359
                         // FIXME  link error
360
                         int padding_value = 0) {
361 362 363 364 365 366 367 368 369
    PADDLE_ENFORCE_EQ(padding_value, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
    PADDLE_ENFORCE_EQ(offset, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

    framework::Tensor ret;
370 371 372
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
373 374 375 376
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
377 378 379 380 381 382 383
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
384 385 386 387 388 389
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
L
Lijunhui 已提交
390 391 392 393

  // batch_diag for CPU only
  Tensor BatchDiag(const Tensor& x, int batch) {
    Tensor out;
394
    auto* x_data = x.data<pten::funcs::Real<T>>();
L
Lijunhui 已提交
395
    auto numel = x.numel();
396
    auto* out_data = out.mutable_data<pten::funcs::Real<T>>(
L
Lijunhui 已提交
397
        x.dims(), context.GetPlace(),
398
        static_cast<size_t>(numel * sizeof(pten::funcs::Real<T>)));
L
Lijunhui 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    auto x_dims = x.dims();
    int num_dims = x_dims.size();
    std::vector<int> out_shape;

    for (int i = 0; i < num_dims - 1; ++i) {
      out_shape.push_back(x.dims()[i]);
    }
    out.Resize(framework::make_ddim(out_shape));
    int order = x.dims()[num_dims - 1];
    int stride_out = order * order;
    int stride_in = order + 1;
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < order; ++j) {
        out_data[i * order + j] = x_data[stride_out * i + stride_in * j];
      }
    }
    return out;
  }

  // a complex number x times a real number y, which is represented as (a+0j)
  Tensor RealMulComplex(const Tensor& x, const Tensor& y) {
    framework::Tensor ret;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<RealMulComplexFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, RealMulComplexFunctor<T>(), &ret);
    return ret;
  }

429 430 431
  framework::Tensor Div(const framework::Tensor& x,
                        const framework::Tensor& y) {
    framework::Tensor ret;
432 433 434 435 436 437 438 439 440 441 442 443 444 445
    if (x.type() != y.type()) {
      ret.mutable_data<T>(x.dims(), context.GetPlace());
      auto x_vector = EigenVector<T>::Flatten(x);
      auto y_vector = EigenVector<ValueType>::Flatten(y);
      auto out_vector = EigenVector<T>::Flatten(ret);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      out_vector.device(place) = x_vector / y_vector;
    } else {
      std::vector<int> out_shape = GetBroadcastShape({&x, &y});
      ret.Resize(framework::make_ddim(out_shape));
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, DivFunctor<T>(), &ret);
    }
446
    return ret;
447 448 449
  }
  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
450 451
    // element wise add, support numpy broadcast.
    framework::Tensor ret;
452
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
453 454 455 456
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
457 458 459
  }
  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
460
    framework::Tensor ret;
461
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

  framework::Tensor ReduceSum(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

  framework::Tensor ReduceMax(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
482
  }
483 484
  // Support float and complex type subtraction,the default is T type
  template <typename InT = T>
485 486
  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
487
    framework::Tensor ret;
488
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
489
    ret.Resize(framework::make_ddim(out_shape));
490 491 492 493
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
494 495
      ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
          context, &x, &y, -1, SubFunctor<InT>(), &ret);
496
#endif
497
    } else {
498
      if (x.dims().size() >= y.dims().size()) {
499 500
        ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, SubFunctor<InT>(), &ret);
501
      } else {
502 503 504 505
        // This is copyed from elementwise_sub, which means we
        // need reverse will xrank < yrank
        ElementwiseComputeEx<InverseSubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, InverseSubFunctor<InT>(), &ret);
506
      }
507 508
    }
    return ret;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
  }
  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
    out.Resize(framework::make_ddim(out_shape));
    return out;
  }
525 526 527 528 529
  framework::Tensor Fill(std::vector<int> shape, float fill_value) {
    framework::Tensor ret;
    ret.Resize(framework::make_ddim(shape));
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
530
    pten::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
531
    return ret;
532
  }
533 534 535
  framework::Tensor Infinits(std::vector<int> shape) {
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
536
  }
537 538
  framework::Tensor Eye(int n) {
    auto output = Fill({n}, 1);
539 540 541 542 543
    auto ret = Diag(output);
    return ret;
  }
  framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
                          std::vector<int> starts, std::vector<int> ends) {
544
    framework::Tensor ret;
545 546
    std::vector<int> new_axes = axes;
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
547
    size_t rank = out_shape.size();
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    PADDLE_ENFORCE_EQ(
        axes.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
        ends.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
      PADDLE_ENFORCE_GT(ed, st,
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
    ret.Resize(framework::make_ddim(out_shape));
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
590 591
  }

592 593 594 595 596 597 598 599 600 601 602 603 604
  framework::Tensor TrilTriu(const framework::Tensor& x, int diagonal,
                             bool lower) {
    framework::AttributeMap attrs;
    attrs["diagonal"] = diagonal;
    attrs["lower"] = lower;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
    PADDLE_ENFORCE_GE(x_rank, 2, platform::errors::InvalidArgument(
                                     "Rank must be at least 2."));
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
    return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape);
  }

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  framework::Tensor TriangularSolve(const framework::Tensor& x,
                                    const framework::Tensor& y, bool upper,
                                    bool transpose, bool unitriangular) {
    framework::AttributeMap attrs;
    attrs["upper"] = upper;
    attrs["transpose"] = transpose;
    attrs["unitriangular"] = unitriangular;
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    auto y_dims_n = y_dims.size();
    std::vector<int64_t> x_dims_vec =
        paddle::framework::vectorize<int64_t>(x_dims);
    std::vector<int64_t> y_dims_vec =
        paddle::framework::vectorize<int64_t>(y_dims);
    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);
    std::vector<int64_t> expand_batch_portion =
        get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut);
    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
    y_broadcast_dims.insert(y_broadcast_dims.end(), {y_dims_vec[y_dims_n - 2],
                                                     y_dims_vec[y_dims_n - 1]});
    std::vector<int> out_shape(y_broadcast_dims.begin(),
                               y_broadcast_dims.end());
    return CreateOpRunAndReturnTensor("triangular_solve", inputs, attrs,
                                      out_shape);
  }

  framework::Tensor ConcatTwoTensors(const framework::Tensor& x,
                                     const framework::Tensor& y, int axis) {
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    std::vector<framework::DDim> inputs_dims({x.dims(), y.dims()});
    NameInTensorMap inputs({{"X", {&x, &y}}});
    size_t axis_ =
        ComputeAxisForConcatOp(static_cast<int64_t>(axis),
                               static_cast<int64_t>(inputs_dims[0].size()));
    framework::DDim out_dims =
        ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_);
    if (out_dims[axis_] < 0) {
      out_dims[axis_] = -1;
    }
    std::vector<int> out_shape = framework::vectorize<int>(out_dims);
    return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape);
  }

653 654 655 656 657
  Tensor Conj(const Tensor& x) {
    Tensor out;
    auto* out_data = out.mutable_data<T>(x.dims(), context.GetPlace());
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(x.numel());
658
    pten::funcs::ConjFunctor<T> functor(x_data, x.numel(), out_data);
659 660 661 662
    for_range(functor);
    return out;
  }

L
Lijunhui 已提交
663 664 665
  Tensor Real(const Tensor& x) {
    Tensor out;
    auto numel = x.numel();
666
    auto* out_data = out.mutable_data<pten::funcs::Real<T>>(
L
Lijunhui 已提交
667
        x.dims(), context.GetPlace(),
668
        static_cast<size_t>(numel * sizeof(pten::funcs::Real<T>)));
L
Lijunhui 已提交
669 670
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(numel);
671
    pten::funcs::RealFunctor<T> functor(x_data, out_data, numel);
L
Lijunhui 已提交
672 673 674 675
    for_range(functor);
    return out;
  }

676 677 678 679 680 681 682 683 684 685 686 687 688
  Tensor DiagFill(const int m, const int n, const int num_lower_diags,
                  const int num_upper_diags, const Tensor& scale,
                  const Tensor& input) {
    Tensor out;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, input.numel());
    DiagAndFillFunctor<T, ValueType> diag_and_copy_functor(
        m, n, num_lower_diags, num_upper_diags, scale.data<ValueType>(),
        input.data<T>(), out.mutable_data<T>(input.dims(), input.place()));
    for_range(diag_and_copy_functor);
    return out;
  }

689 690
 private:
  const framework::ExecutionContext& context;
691 692
  pten::funcs::BlasT<DeviceContext, T> GetBlas() {
    return pten::funcs::GetBlas<DeviceContext, T>(context);
693 694 695 696 697
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  template <size_t D>
  void EigenSliceWrapper(const framework::Tensor* in,
                         const std::vector<int>& start,
                         const std::vector<int>& end, framework::Tensor* out) {
    // Slice by call Eigen Tensor Function `.slice()`
    size_t rank = in->dims().size();
    PADDLE_ENFORCE_EQ(start.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
    PADDLE_ENFORCE_EQ(end.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
  }
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  framework::Tensor CreateOpRunAndReturnTensor(
      const std::string& type, const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs, std::vector<int> out_shape,
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
        framework::make_ddim(out_shape), context.GetPlace());
    // framework::make_ddim(out_shape)
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
759

760 761 762 763 764 765 766 767 768 769 770 771 772
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
    out.Resize(framework::make_ddim(out_shape));
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle