Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5b5656d0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b5656d0
编写于
2月 16, 2022
作者:
F
Feiyu Chan
提交者:
GitHub
2月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Pten] move complex_functors.h (#39558)
* move complex_functors.h and update all references to symbols within it
上级
12ca438e
变更
35
隐藏空白更改
内联
并排
Showing
35 changed file
with
318 addition
and
309 deletion
+318
-309
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+4
-0
paddle/fluid/operators/angle_op.h
paddle/fluid/operators/angle_op.h
+6
-81
paddle/fluid/operators/cholesky_solve_op.h
paddle/fluid/operators/cholesky_solve_op.h
+5
-5
paddle/fluid/operators/complex_op.h
paddle/fluid/operators/complex_op.h
+1
-1
paddle/fluid/operators/complex_view_op.h
paddle/fluid/operators/complex_view_op.h
+1
-1
paddle/fluid/operators/cumprod_op.cu
paddle/fluid/operators/cumprod_op.cu
+3
-3
paddle/fluid/operators/cumprod_op.h
paddle/fluid/operators/cumprod_op.h
+3
-3
paddle/fluid/operators/determinant_op.h
paddle/fluid/operators/determinant_op.h
+2
-2
paddle/fluid/operators/dot_op.h
paddle/fluid/operators/dot_op.h
+1
-1
paddle/fluid/operators/eig_op.h
paddle/fluid/operators/eig_op.h
+22
-20
paddle/fluid/operators/eigh_op.h
paddle/fluid/operators/eigh_op.h
+1
-1
paddle/fluid/operators/eigvals_op.h
paddle/fluid/operators/eigvals_op.h
+12
-12
paddle/fluid/operators/imag_op.h
paddle/fluid/operators/imag_op.h
+7
-6
paddle/fluid/operators/lstsq_op.h
paddle/fluid/operators/lstsq_op.h
+3
-3
paddle/fluid/operators/lu_op.h
paddle/fluid/operators/lu_op.h
+3
-2
paddle/fluid/operators/math/eigen_values_vectors.h
paddle/fluid/operators/math/eigen_values_vectors.h
+6
-6
paddle/fluid/operators/math/inclusive_scan.h
paddle/fluid/operators/math/inclusive_scan.h
+2
-2
paddle/fluid/operators/matmul_v2_op.h
paddle/fluid/operators/matmul_v2_op.h
+1
-1
paddle/fluid/operators/matrix_rank_op.cu
paddle/fluid/operators/matrix_rank_op.cu
+3
-3
paddle/fluid/operators/qr_op.cu
paddle/fluid/operators/qr_op.cu
+10
-7
paddle/fluid/operators/qr_op.h
paddle/fluid/operators/qr_op.h
+13
-10
paddle/fluid/operators/real_op.h
paddle/fluid/operators/real_op.h
+7
-6
paddle/fluid/operators/renorm_op.h
paddle/fluid/operators/renorm_op.h
+1
-1
paddle/fluid/operators/spectral_op.cu
paddle/fluid/operators/spectral_op.cu
+9
-9
paddle/fluid/operators/svd_helper.h
paddle/fluid/operators/svd_helper.h
+10
-9
paddle/fluid/operators/svd_op.h
paddle/fluid/operators/svd_op.h
+7
-7
paddle/fluid/operators/triangular_solve_op.h
paddle/fluid/operators/triangular_solve_op.h
+3
-3
paddle/pten/kernels/cpu/abs_grad_kernel.cc
paddle/pten/kernels/cpu/abs_grad_kernel.cc
+1
-1
paddle/pten/kernels/cpu/abs_kernel.cc
paddle/pten/kernels/cpu/abs_kernel.cc
+5
-5
paddle/pten/kernels/funcs/complex_functors.h
paddle/pten/kernels/funcs/complex_functors.h
+146
-60
paddle/pten/kernels/gpu/abs_kernel.cu
paddle/pten/kernels/gpu/abs_kernel.cu
+6
-11
paddle/pten/kernels/impl/abs_grad_kernel_impl.h
paddle/pten/kernels/impl/abs_grad_kernel_impl.h
+4
-5
paddle/pten/kernels/impl/complex_kernel_impl.h
paddle/pten/kernels/impl/complex_kernel_impl.h
+2
-2
paddle/pten/kernels/impl/dot_grad_kernel_impl.h
paddle/pten/kernels/impl/dot_grad_kernel_impl.h
+7
-19
paddle/pten/kernels/impl/matmul_kernel_impl.h
paddle/pten/kernels/impl/matmul_kernel_impl.h
+1
-1
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
5b5656d0
include
(
operators
)
# solve "math constants not defined" problems caused by the order of inclusion
# of <cmath> and the definition of macro _USE_MATH_DEFINES
add_definitions
(
-D_USE_MATH_DEFINES
)
# clean cache and pybind_file content first when rebuild
unset
(
GLOB_OP_LIB CACHE
)
unset
(
OP_LIBRARY CACHE
)
...
...
paddle/fluid/operators/angle_op.h
浏览文件 @
5b5656d0
...
...
@@ -17,7 +17,7 @@
#define _USE_MATH_DEFINES
#endif
#include <cmath>
#include "paddle/
fluid/operators/math
/complex_functors.h"
#include "paddle/
pten/kernels/funcs
/complex_functors.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
...
...
@@ -26,81 +26,6 @@
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleFunctor
;
// angel function for complex
template
<
typename
T
>
struct
AngleFunctor
<
T
,
Complex
<
T
,
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
Real
<
T
>*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
arg
(
input_
[
idx
]);
}
const
T
*
input_
;
Real
<
T
>*
output_
;
int64_t
numel_
;
};
// angel function for real
template
<
typename
T
>
struct
AngleFunctor
<
T
,
NoComplex
<
T
,
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
T
*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
input_
[
idx
]
<
static_cast
<
T
>
(
0
)
?
M_PI
:
0
;
}
const
T
*
input_
;
T
*
output_
;
int64_t
numel_
;
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleGradFunctor
;
// angle grad for complex
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
Complex
<
T
,
Real
<
T
>>>
{
AngleGradFunctor
(
const
math
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
T
(
0
))
{
dx_
[
idx
]
=
T
(
0
);
}
else
{
const
math
::
Real
<
T
>
r_square
=
x_
[
idx
].
real
*
x_
[
idx
].
real
+
x_
[
idx
].
imag
*
x_
[
idx
].
imag
;
dx_
[
idx
]
=
T
(
-
dout_
[
idx
]
*
x_
[
idx
].
imag
/
r_square
,
dout_
[
idx
]
*
x_
[
idx
].
real
/
r_square
);
}
}
const
math
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
// angle grad for real
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
NoComplex
<
T
,
Real
<
T
>>>
{
AngleGradFunctor
(
const
math
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
dx_
[
idx
]
=
0
;
}
const
math
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
}
// namespace math
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
AngleKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -111,12 +36,12 @@ class AngleKernel : public framework::OpKernel<T> {
auto
numel
=
x
->
numel
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
x
->
numel
()
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
out_data
=
out
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
x
->
numel
()
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
AngleFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
pten
::
funcs
::
AngleFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
}
};
...
...
@@ -132,14 +57,14 @@ class AngleGradKernel : public framework::OpKernel<T> {
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
numel
=
d_out
->
numel
();
auto
*
dout_data
=
d_out
->
data
<
math
::
Real
<
T
>>
();
auto
*
dout_data
=
d_out
->
data
<
pten
::
funcs
::
Real
<
T
>>
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
dx_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
T
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
AngleGradFunctor
<
T
>
functor
(
dout_data
,
x_data
,
dx_data
,
numel
);
pten
::
funcs
::
AngleGradFunctor
<
T
>
functor
(
dout_data
,
x_data
,
dx_data
,
numel
);
for_range
(
functor
);
}
};
...
...
paddle/fluid/operators/cholesky_solve_op.h
浏览文件 @
5b5656d0
...
...
@@ -64,7 +64,7 @@ void cholesky_solve_fn(const paddle::framework::ExecutionContext &ctx,
// calculate u's conjugate for complex
framework
::
Tensor
u_conj
(
u_bst
.
type
());
platform
::
ForRange
<
DeviceContext
>
u_for_range
(
dev_ctx
,
u_bst
.
numel
());
math
::
ConjFunctor
<
T
>
u_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
u_functor
(
u_bst
.
data
<
T
>
(),
u_bst
.
numel
(),
u_conj
.
mutable_data
<
T
>
(
u_bst
.
dims
(),
dev_ctx
.
GetPlace
()));
u_for_range
(
u_functor
);
...
...
@@ -73,7 +73,7 @@ void cholesky_solve_fn(const paddle::framework::ExecutionContext &ctx,
// calculate b's conjugate for complex
framework
::
Tensor
b_conj
(
b_bst
.
type
());
platform
::
ForRange
<
DeviceContext
>
b_for_range
(
dev_ctx
,
b_bst
.
numel
());
math
::
ConjFunctor
<
T
>
b_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
b_functor
(
b_bst
.
data
<
T
>
(),
b_bst
.
numel
(),
b_conj
.
mutable_data
<
T
>
(
b_bst
.
dims
(),
dev_ctx
.
GetPlace
()));
b_for_range
(
b_functor
);
...
...
@@ -113,7 +113,7 @@ void cholesky_solve_fn(const paddle::framework::ExecutionContext &ctx,
// calculate out's conjugate for complex
platform
::
ForRange
<
DeviceContext
>
out_for_range
(
dev_ctx
,
out
->
numel
());
math
::
ConjFunctor
<
T
>
out_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
out_functor
(
out
->
data
<
T
>
(),
out
->
numel
(),
out
->
mutable_data
<
T
>
(
out
->
dims
(),
dev_ctx
.
GetPlace
()));
out_for_range
(
out_functor
);
...
...
@@ -173,7 +173,7 @@ class CholeskySolveGradKernel : public framework::OpKernel<T> {
// calculate out's conjugate for complex
framework
::
Tensor
out_conj
(
out
->
type
());
platform
::
ForRange
<
DeviceContext
>
out_for_range
(
dev_ctx
,
out
->
numel
());
math
::
ConjFunctor
<
T
>
out_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
out_functor
(
out
->
data
<
T
>
(),
out
->
numel
(),
out_conj
.
mutable_data
<
T
>
(
out
->
dims
(),
dev_ctx
.
GetPlace
()));
out_for_range
(
out_functor
);
...
...
@@ -195,7 +195,7 @@ class CholeskySolveGradKernel : public framework::OpKernel<T> {
framework
::
Tensor
commonterm_conj
(
commonterm
.
type
());
platform
::
ForRange
<
DeviceContext
>
commonterm_for_range
(
dev_ctx
,
commonterm
.
numel
());
math
::
ConjFunctor
<
T
>
commonterm_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
commonterm_functor
(
commonterm
.
data
<
T
>
(),
commonterm
.
numel
(),
commonterm_conj
.
mutable_data
<
T
>
(
commonterm
.
dims
(),
dev_ctx
.
GetPlace
()));
...
...
paddle/fluid/operators/complex_op.h
浏览文件 @
5b5656d0
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/complex_view_op.h
浏览文件 @
5b5656d0
...
...
@@ -17,9 +17,9 @@
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/cumprod_op.cu
浏览文件 @
5b5656d0
...
...
@@ -14,9 +14,9 @@
#include <thrust/transform.h>
#include "paddle/fluid/operators/cumprod_op.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/inclusive_scan.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -243,12 +243,12 @@ class CumprodGradOpCUDAKernel : public framework::OpKernel<T> {
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range_x
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor_x
(
x_data
,
numel
,
x_data_conj
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor_x
(
x_data
,
numel
,
x_data_conj
);
for_range_x
(
functor_x
);
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range_y
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor_y
(
y_data
,
numel
,
y_data_conj
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor_y
(
y_data
,
numel
,
y_data_conj
);
for_range_y
(
functor_y
);
x_data_deal
=
x_data_conj
;
y_data_deal
=
y_data_conj
;
...
...
paddle/fluid/operators/cumprod_op.h
浏览文件 @
5b5656d0
...
...
@@ -18,8 +18,8 @@
#include <type_traits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -124,12 +124,12 @@ class CumprodGradOpCPUKernel : public framework::OpKernel<T> {
platform
::
ForRange
<
platform
::
CPUDeviceContext
>
for_range_x
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor_x
(
x_data
,
numel
,
x_data_conj
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor_x
(
x_data
,
numel
,
x_data_conj
);
for_range_x
(
functor_x
);
platform
::
ForRange
<
platform
::
CPUDeviceContext
>
for_range_out
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor_out
(
out_data
,
numel
,
out_data_conj
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor_out
(
out_data
,
numel
,
out_data_conj
);
for_range_out
(
functor_out
);
x_data_deal
=
x_data_conj
;
...
...
paddle/fluid/operators/determinant_op.h
浏览文件 @
5b5656d0
...
...
@@ -19,11 +19,11 @@
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -395,7 +395,7 @@ class SlogDeterminantGradKernel : public framework::OpKernel<T> {
size_t
(
numel
*
sizeof
(
T
)));
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
ConjFunctor
<
T
>
functor
(
inverse_A
.
data
<
T
>
(),
numel
,
conj_data
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor
(
inverse_A
.
data
<
T
>
(),
numel
,
conj_data
);
for_range
(
functor
);
VLOG
(
3
)
<<
"inverse(A).conj() dims: "
<<
conj_inverse_A
.
dims
();
...
...
paddle/fluid/operators/dot_op.h
浏览文件 @
5b5656d0
...
...
@@ -16,8 +16,8 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
...
...
paddle/fluid/operators/eig_op.h
浏览文件 @
5b5656d0
...
...
@@ -17,12 +17,12 @@
#include <math.h>
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/funcs/math_function.h"
#define EPSILON 1e-6
...
...
@@ -87,18 +87,19 @@ void LapackEig(Tensor* input, Tensor* values, Tensor* vectors, int info,
int
values_stride
=
values
->
dims
()[
values
->
dims
().
size
()
-
1
];
Tensor
rwork
;
math
::
Real
<
T
>*
rwork_data
=
nullptr
;
pten
::
funcs
::
Real
<
T
>*
rwork_data
=
nullptr
;
rwork
.
Resize
(
framework
::
make_ddim
({
lda
*
2
}));
rwork_data
=
rwork
.
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
());
rwork_data
=
rwork
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
());
// call lapackEig once to compute the size of work;
T
computed_work_size
;
math
::
lapackEig
<
T
,
math
::
Real
<
T
>>
(
math
::
lapackEig
<
T
,
pten
::
funcs
::
Real
<
T
>>
(
jobvl
,
jobvr
,
order
,
input_data
,
lda
,
values_data
,
lvector_data
,
ldvl
,
rvector_data
,
ldvr
,
&
computed_work_size
,
lwork
,
rwork_data
,
&
info
);
lwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
math
::
Real
<
T
>
(
computed_work_size
)));
lwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
pten
::
funcs
::
Real
<
T
>
(
computed_work_size
)));
Tensor
work
;
work
.
Resize
(
framework
::
make_ddim
({
lwork
}));
T
*
work_data
=
work
.
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -108,7 +109,7 @@ void LapackEig(Tensor* input, Tensor* values, Tensor* vectors, int info,
T
*
current_values
=
&
values_data
[
i
*
values_stride
];
T
*
current_rvectors
=
&
rvector_data
[
i
*
matrix_stride
];
math
::
lapackEig
<
T
,
math
::
Real
<
T
>>
(
math
::
lapackEig
<
T
,
pten
::
funcs
::
Real
<
T
>>
(
jobvl
,
jobvr
,
order
,
current_matrix
,
lda
,
current_values
,
lvector_data
,
ldvl
,
current_rvectors
,
ldvr
,
work_data
,
lwork
,
rwork_data
,
&
info
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -207,26 +208,27 @@ class EigKernel : public framework::OpKernel<T> {
origin_dim
.
push_back
(
last_item
*
2
);
framework
::
DDim
big_dim
=
framework
::
make_ddim
(
origin_dim
);
real_values
.
mutable_data
<
math
::
Real
<
T
>>
(
big_dim
,
context
.
GetPlace
());
real_vectors
.
mutable_data
<
math
::
Real
<
T
>>
(
x
->
dims
(),
context
.
GetPlace
());
real_values
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
big_dim
,
context
.
GetPlace
());
real_vectors
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
x
->
dims
(),
context
.
GetPlace
());
ApplyEigKernel
<
DeviceContext
,
math
::
Real
<
T
>>
(
*
x
,
&
real_values
,
&
real_vectors
,
context
);
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
DeviceContext
,
math
::
Real
<
T
>
,
Tout
>
(
context
);
ApplyEigKernel
<
DeviceContext
,
pten
::
funcs
::
Real
<
T
>>
(
*
x
,
&
real_values
,
&
real_vectors
,
context
);
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
DeviceContext
,
pten
::
funcs
::
Real
<
T
>
,
Tout
>
(
context
);
// 1. extract real part & imag part from real_values
Tensor
real_part
=
dito
.
Slice
(
real_values
,
{
-
1
},
{
0
},
{
order
});
Tensor
imag_part
=
dito
.
Slice
(
real_values
,
{
-
1
},
{
order
},
{
order
*
2
});
// 2. construct complex values
auto
*
real_part_data
=
real_part
.
data
<
math
::
Real
<
T
>>
();
auto
*
imag_part_data
=
imag_part
.
data
<
math
::
Real
<
T
>>
();
auto
*
real_part_data
=
real_part
.
data
<
pten
::
funcs
::
Real
<
T
>>
();
auto
*
imag_part_data
=
imag_part
.
data
<
pten
::
funcs
::
Real
<
T
>>
();
int
out_values_numel
=
out_values
->
numel
();
platform
::
ForRange
<
DeviceContext
>
for_range
(
context
.
template
device_context
<
DeviceContext
>(),
out_values_numel
);
math
::
RealImagToComplexFunctor
<
Tout
>
functor
(
pten
::
funcs
::
RealImagToComplexFunctor
<
Tout
>
functor
(
real_part_data
,
imag_part_data
,
out_values
->
mutable_data
<
Tout
>
(
context
.
GetPlace
()),
out_values_numel
);
for_range
(
functor
);
...
...
@@ -235,7 +237,7 @@ class EigKernel : public framework::OpKernel<T> {
Tensor
real_vector_trans
=
dito
.
Transpose
(
real_vectors
);
Tensor
out_vectors_trans
;
out_vectors_trans
.
mutable_data
<
Tout
>
(
x
->
dims
(),
context
.
GetPlace
());
ConstructComplexVectors
<
math
::
Real
<
T
>
,
Tout
>
(
ConstructComplexVectors
<
pten
::
funcs
::
Real
<
T
>
,
Tout
>
(
&
out_vectors_trans
,
*
out_values
,
real_vector_trans
,
context
,
batch_count
,
order
);
TransposeTwoAxis
<
DeviceContext
,
Tout
>
(
out_vectors_trans
,
out_vectors
,
...
...
@@ -271,14 +273,14 @@ void ComputeBackwardForComplexInput(
// turn diag_unsqueezed into complex
auto
numel
=
diag_unsqueezed
.
numel
();
Tensor
diag_unsqueezed_complex
;
auto
*
data_diag_un
=
diag_unsqueezed
.
data
<
math
::
Real
<
Tout
>>
();
auto
*
data_diag_un
=
diag_unsqueezed
.
data
<
pten
::
funcs
::
Real
<
Tout
>>
();
auto
*
data_diag_un_com
=
diag_unsqueezed_complex
.
mutable_data
<
Tout
>
(
diag_unsqueezed
.
dims
(),
context
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
Tout
)));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
RealToComplexFunctor
<
Tout
>
functor
(
data_diag_un
,
data_diag_un_com
,
numel
);
pten
::
funcs
::
RealToComplexFunctor
<
Tout
>
functor
(
data_diag_un
,
data_diag_un_com
,
numel
);
for_range
(
functor
);
// real tensor multiply complex tensor in broadcast manner
Tensor
res1
=
dito
.
RealMulComplex
(
V
,
diag_unsqueezed_complex
);
...
...
paddle/fluid/operators/eigh_op.h
浏览文件 @
5b5656d0
...
...
@@ -40,7 +40,7 @@ template <typename DeviceContext, typename T>
class
EighGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
ValueType
=
math
::
Real
<
T
>
;
using
ValueType
=
pten
::
funcs
::
Real
<
T
>
;
auto
&
x_grad
=
*
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
x_grad
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
output_w
=
*
ctx
.
Input
<
Tensor
>
(
"Eigenvalues"
);
...
...
paddle/fluid/operators/eigvals_op.h
浏览文件 @
5b5656d0
...
...
@@ -20,9 +20,9 @@
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -48,7 +48,7 @@ struct PaddleComplex<
template
<
typename
T
>
using
PaddleCType
=
typename
PaddleComplex
<
T
>::
type
;
template
<
typename
T
>
using
Real
=
typename
math
::
Real
<
T
>
;
using
Real
=
typename
pten
::
funcs
::
Real
<
T
>
;
static
void
SpiltBatchSquareMatrix
(
const
Tensor
&
input
,
std
::
vector
<
Tensor
>*
output
)
{
...
...
@@ -118,7 +118,7 @@ LapackEigvals(const framework::ExecutionContext& ctx, const Tensor& input,
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
.
template
device_context
<
DeviceContext
>(),
n_dim
);
math
::
RealImagToComplexFunctor
<
PaddleCType
<
T
>>
functor
(
pten
::
funcs
::
RealImagToComplexFunctor
<
PaddleCType
<
T
>>
functor
(
w_data
,
w_data
+
n_dim
,
output
->
template
data
<
PaddleCType
<
T
>
>
(),
n_dim
);
for_range
(
functor
);
}
...
...
@@ -143,7 +143,7 @@ LapackEigvals(const framework::ExecutionContext& ctx, const Tensor& input,
required_work_mem
,
work_mem
));
int64_t
rwork_mem
=
rwork
->
memory_size
();
int64_t
required_rwork_mem
=
(
n_dim
<<
1
)
*
sizeof
(
Real
<
T
>
);
int64_t
required_rwork_mem
=
(
n_dim
<<
1
)
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
);
PADDLE_ENFORCE_GE
(
rwork_mem
,
required_rwork_mem
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -153,11 +153,11 @@ LapackEigvals(const framework::ExecutionContext& ctx, const Tensor& input,
required_rwork_mem
,
rwork_mem
));
int
info
=
0
;
math
::
lapackEig
<
T
,
Real
<
T
>>
(
math
::
lapackEig
<
T
,
pten
::
funcs
::
Real
<
T
>>
(
'N'
,
'N'
,
static_cast
<
int
>
(
n_dim
),
a
.
template
data
<
T
>(),
static_cast
<
int
>
(
n_dim
),
output
->
template
data
<
T
>(),
NULL
,
1
,
NULL
,
1
,
work
->
template
data
<
T
>(),
static_cast
<
int
>
(
work_mem
/
sizeof
(
T
)),
rwork
->
template
data
<
Real
<
T
>
>
(),
&
info
);
rwork
->
template
data
<
pten
::
funcs
::
Real
<
T
>
>
(),
&
info
);
std
::
string
name
=
"framework::platform::dynload::cgeev_"
;
if
(
framework
::
TransToProtoVarType
(
input
.
dtype
())
==
...
...
@@ -187,10 +187,10 @@ class EigvalsKernel : public framework::OpKernel<T> {
// query workspace size
T
qwork
;
int
info
;
math
::
lapackEig
<
T
,
Real
<
T
>>
(
'N'
,
'N'
,
static_cast
<
int
>
(
n_dim
),
input_matrices
[
0
].
template
data
<
T
>(),
static_cast
<
int
>
(
n_dim
),
NULL
,
NULL
,
1
,
NULL
,
1
,
&
qwork
,
-
1
,
static_cast
<
Real
<
T
>*>
(
NULL
),
&
info
);
math
::
lapackEig
<
T
,
pten
::
funcs
::
Real
<
T
>>
(
'N'
,
'N'
,
static_cast
<
int
>
(
n_dim
),
input_matrices
[
0
].
template
data
<
T
>(),
static_cast
<
int
>
(
n_dim
),
NULL
,
NULL
,
1
,
NULL
,
1
,
&
qwork
,
-
1
,
static_cast
<
pten
::
funcs
::
Real
<
T
>*>
(
NULL
),
&
info
);
int64_t
lwork
=
static_cast
<
int64_t
>
(
qwork
);
Tensor
work
,
rwork
;
...
...
@@ -207,8 +207,8 @@ class EigvalsKernel : public framework::OpKernel<T> {
}
if
(
framework
::
IsComplexType
(
framework
::
TransToProtoVarType
(
input
->
dtype
())))
{
rwork
.
mutable_data
<
Real
<
T
>>
(
framework
::
make_ddim
({
n_dim
<<
1
}),
ctx
.
GetPlace
());
rwork
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
framework
::
make_ddim
({
n_dim
<<
1
}),
ctx
.
GetPlace
());
}
for
(
int64_t
i
=
0
;
i
<
n_batch
;
++
i
)
{
...
...
paddle/fluid/operators/imag_op.h
浏览文件 @
5b5656d0
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -31,12 +31,13 @@ class ImagKernel : public framework::OpKernel<T> {
auto
numel
=
x
->
numel
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
math
::
Real
<
T
>>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
out_data
=
out
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
ImagFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
pten
::
funcs
::
ImagFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
}
};
...
...
@@ -51,13 +52,13 @@ class ImagGradKernel : public framework::OpKernel<T> {
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
numel
=
d_out
->
numel
();
auto
*
dout_data
=
d_out
->
data
<
math
::
Real
<
T
>>
();
auto
*
dout_data
=
d_out
->
data
<
pten
::
funcs
::
Real
<
T
>>
();
auto
*
dx_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
T
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
ImagToComplexFunctor
<
T
>
functor
(
dout_data
,
dx_data
,
numel
);
pten
::
funcs
::
ImagToComplexFunctor
<
T
>
functor
(
dout_data
,
dx_data
,
numel
);
for_range
(
functor
);
}
};
...
...
paddle/fluid/operators/lstsq_op.h
浏览文件 @
5b5656d0
...
...
@@ -18,7 +18,6 @@
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/eig_op.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/eigen_values_vectors.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/operators/math/matrix_solve.h"
...
...
@@ -26,6 +25,7 @@
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/operators/triangular_solve_op.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/funcs/math_function.h"
#define EPSILON 1e-6
...
...
@@ -46,7 +46,7 @@ template <typename DeviceContext, typename T>
class
LstsqCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
using
ValueType
=
math
::
Real
<
T
>
;
using
ValueType
=
pten
::
funcs
::
Real
<
T
>
;
const
Tensor
&
x
=
*
context
.
Input
<
Tensor
>
(
"X"
);
auto
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
...
...
@@ -169,7 +169,7 @@ class LstsqCPUKernel : public framework::OpKernel<T> {
&
rwkopt
,
&
info
);
}
lwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
math
::
Real
<
T
>
(
wkopt
)));
lwork
=
std
::
max
<
int
>
(
1
,
static_cast
<
int
>
(
pten
::
funcs
::
Real
<
T
>
(
wkopt
)));
Tensor
work
;
work
.
Resize
(
framework
::
make_ddim
({
lwork
}));
T
*
work_data
=
work
.
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/fluid/operators/lu_op.h
浏览文件 @
5b5656d0
...
...
@@ -211,8 +211,9 @@ void Tensor_Conj(const DeviceContext& dev_ctx, const framework::Tensor& tensor,
framework
::
Tensor
*
out
)
{
out
->
Resize
(
tensor
.
dims
());
platform
::
ForRange
<
DeviceContext
>
out_for_range
(
dev_ctx
,
tensor
.
numel
());
math
::
ConjFunctor
<
T
>
out_functor
(
tensor
.
data
<
T
>
(),
tensor
.
numel
(),
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
()));
pten
::
funcs
::
ConjFunctor
<
T
>
out_functor
(
tensor
.
data
<
T
>
(),
tensor
.
numel
(),
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
()));
out_for_range
(
out_functor
);
}
...
...
paddle/fluid/operators/math/eigen_values_vectors.h
浏览文件 @
5b5656d0
...
...
@@ -63,7 +63,7 @@ struct MatrixEighFunctor<platform::CPUDeviceContext, T> {
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
eigen_values
,
Tensor
*
eigen_vectors
,
bool
is_lower
,
bool
has_vectors
)
{
using
ValueType
=
math
::
Real
<
T
>
;
using
ValueType
=
pten
::
funcs
::
Real
<
T
>
;
auto
*
out_value
=
eigen_values
->
mutable_data
<
ValueType
>
(
ctx
.
GetPlace
());
auto
dito
=
...
...
@@ -123,9 +123,9 @@ struct MatrixEighFunctor<platform::CPUDeviceContext, T> {
for
(
auto
i
=
0
;
i
<
batch_size
;
i
++
)
{
auto
*
value_data
=
out_value
+
i
*
values_stride
;
auto
*
input_data
=
input_vector
+
i
*
vector_stride
;
math
::
lapackEigh
<
T
,
Real
<
T
>>
(
jobz
,
uplo
,
n
,
input_data
,
lda
,
value_data
,
work_data
,
lwork
,
rwork_data
,
lr
work
,
iwork_data
,
liwork
,
&
info
);
math
::
lapackEigh
<
T
,
pten
::
funcs
::
Real
<
T
>>
(
jobz
,
uplo
,
n
,
input_data
,
lda
,
value_data
,
work_data
,
l
work
,
rwork_data
,
lrwork
,
iwork_data
,
liwork
,
&
info
);
CheckEighResult
(
i
,
info
);
}
if
(
has_vectors
)
{
...
...
@@ -151,7 +151,7 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, T> {
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
input
,
Tensor
*
eigen_values
,
Tensor
*
eigen_vectors
,
bool
is_lower
,
bool
has_vectors
)
{
using
ValueType
=
math
::
Real
<
T
>
;
using
ValueType
=
pten
::
funcs
::
Real
<
T
>
;
auto
*
out_value
=
eigen_values
->
mutable_data
<
ValueType
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
...
...
@@ -233,7 +233,7 @@ struct MatrixEighFunctor<platform::CUDADeviceContext, T> {
}
}
using
ValueType
=
math
::
Real
<
T
>
;
using
ValueType
=
pten
::
funcs
::
Real
<
T
>
;
inline
void
EvdBuffer
(
cusolverDnHandle_t
handle
,
cusolverEigMode_t
jobz
,
cublasFillMode_t
uplo
,
int
n
,
const
T
*
A
,
int
lda
,
const
ValueType
*
W
,
int
*
lwork
)
const
;
...
...
paddle/fluid/operators/math/inclusive_scan.h
浏览文件 @
5b5656d0
...
...
@@ -26,9 +26,9 @@ namespace cub = hipcub;
#include <thrust/iterator/reverse_iterator.h>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -115,7 +115,7 @@ static __global__ void InclusiveScanInnerDimCUDAKernel(const T *x, T *y,
size_t
num_rows
,
size_t
row_size
,
T
init
,
BinaryOp
op
)
{
using
RealT
=
math
::
Real
<
T
>
;
using
RealT
=
pten
::
funcs
::
Real
<
T
>
;
constexpr
auto
kSharedBufferSize
=
framework
::
IsComplex
<
T
>::
value
?
4
*
kThreadNumX
:
2
*
kThreadNumX
;
__shared__
RealT
sbuf
[
kThreadNumY
][
kSharedBufferSize
];
...
...
paddle/fluid/operators/matmul_v2_op.h
浏览文件 @
5b5656d0
...
...
@@ -22,8 +22,8 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
...
...
paddle/fluid/operators/matrix_rank_op.cu
浏览文件 @
5b5656d0
...
...
@@ -18,11 +18,11 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/matrix_rank_op.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/dynload/cusolver.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/funcs/math_function.h"
namespace
paddle
{
...
...
@@ -93,8 +93,8 @@ class MatrixRankGPUKernel : public framework::OpKernel<T> {
info_ptr
);
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
eigenvalue_tensor
.
numel
());
math
::
AbsFunctor
<
T
>
functor
(
eigenvalue_data
,
eigenvalue_data
,
eigenvalue_tensor
.
numel
());
pten
::
funcs
::
AbsFunctor
<
T
>
functor
(
eigenvalue_data
,
eigenvalue_data
,
eigenvalue_tensor
.
numel
());
for_range
(
functor
);
}
else
{
Tensor
U
,
VH
;
...
...
paddle/fluid/operators/qr_op.cu
浏览文件 @
5b5656d0
...
...
@@ -56,12 +56,13 @@ class QrGPUKernel : public framework::OpKernel<T> {
int
tau_stride
=
min_mn
;
if
(
compute_q
)
{
q
.
mutable_data
<
math
::
Real
<
T
>>
(
q
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
m
*
k
*
sizeof
(
math
::
Real
<
T
>
)));
size_t
(
batch_size
*
m
*
k
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
}
r
.
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
k
*
n
*
sizeof
(
math
::
Real
<
T
>
)));
r
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
k
*
n
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
dito
=
math
::
DeviceIndependenceTensorOperations
<
platform
::
CUDADeviceContext
,
...
...
@@ -70,8 +71,9 @@ class QrGPUKernel : public framework::OpKernel<T> {
// Note: allocate temporary tensors because of lacking in-place operatios.
// Prepare qr
Tensor
qr
;
qr
.
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
m
*
n
*
sizeof
(
math
::
Real
<
T
>
)));
qr
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
m
*
n
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
// BatchedGeqrf performs computation in-place and 'qr' must be a copy of
// input
paddle
::
framework
::
TensorCopy
(
x
,
context
.
GetPlace
(),
&
qr
);
...
...
@@ -124,7 +126,8 @@ class QrGPUKernel : public framework::OpKernel<T> {
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
memory
::
Copy
(
dev_ctx
.
GetPlace
(),
(
new_qr_data
+
i
*
new_qr_stride
),
dev_ctx
.
GetPlace
(),
(
qr_data
+
i
*
qr_stride
),
qr_stride
*
sizeof
(
math
::
Real
<
T
>
),
dev_ctx
.
stream
());
qr_stride
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
),
dev_ctx
.
stream
());
}
BatchedOrgqr
<
platform
::
CUDADeviceContext
,
T
>
(
dev_ctx
,
batch_size
,
m
,
m
,
min_mn
,
new_qr_data
,
m
,
tau_data
,
...
...
paddle/fluid/operators/qr_op.h
浏览文件 @
5b5656d0
...
...
@@ -18,9 +18,9 @@
#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -74,17 +74,20 @@ class QrCPUKernel : public framework::OpKernel<T> {
int
q_stride
=
m
*
k
;
int
r_stride
=
k
*
n
;
auto
*
x_data
=
x
.
data
<
math
::
Real
<
T
>>
();
auto
*
x_data
=
x
.
data
<
pten
::
funcs
::
Real
<
T
>>
();
T
*
q_data
=
nullptr
;
if
(
compute_q
)
{
q_data
=
q
.
mutable_data
<
math
::
Real
<
T
>>
(
q_data
=
q
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
m
*
k
*
sizeof
(
math
::
Real
<
T
>
)));
memset
(
q_data
,
0
,
size_t
(
batch_size
*
m
*
k
*
sizeof
(
math
::
Real
<
T
>
)));
size_t
(
batch_size
*
m
*
k
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
memset
(
q_data
,
0
,
size_t
(
batch_size
*
m
*
k
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
}
auto
*
r_data
=
r
.
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
k
*
n
*
sizeof
(
math
::
Real
<
T
>
)));
memset
(
r_data
,
0
,
size_t
(
batch_size
*
k
*
n
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
r_data
=
r
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batch_size
*
k
*
n
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
memset
(
r_data
,
0
,
size_t
(
batch_size
*
k
*
n
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
// Implement QR by calling Eigen
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
@@ -140,7 +143,7 @@ class QrGradKernel : public framework::OpKernel<T> {
// Use a different name dA instead of dX
framework
::
Tensor
&
dA
=
*
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dA
.
mutable_data
<
math
::
Real
<
T
>>
(
ctx
.
GetPlace
());
dA
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
pten
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
()(
dev_ctx
,
&
dA
,
T
(
0
));
...
...
@@ -222,7 +225,7 @@ class QrGradKernel : public framework::OpKernel<T> {
}
else
{
// If m < n for input matrices A, we partition A = [X|Y] and R = [U|V]
// Calculate dX and dY individually and concatenate them to get dA
dA
.
mutable_data
<
math
::
Real
<
T
>>
(
ctx
.
GetPlace
());
dA
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
ctx
.
GetPlace
());
auto
Y
=
dito
.
Slice
(
A
,
{
-
1
},
{
m
},
{
n
});
auto
U
=
dito
.
Slice
(
R
,
{
-
1
},
{
0
},
{
m
});
...
...
paddle/fluid/operators/real_op.h
浏览文件 @
5b5656d0
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -31,12 +31,13 @@ class RealKernel : public framework::OpKernel<T> {
auto
numel
=
x
->
numel
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
math
::
Real
<
T
>>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
out_data
=
out
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
RealFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
pten
::
funcs
::
RealFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
}
};
...
...
@@ -51,13 +52,13 @@ class RealGradKernel : public framework::OpKernel<T> {
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
numel
=
d_out
->
numel
();
auto
*
dout_data
=
d_out
->
data
<
math
::
Real
<
T
>>
();
auto
*
dout_data
=
d_out
->
data
<
pten
::
funcs
::
Real
<
T
>>
();
auto
*
dx_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
T
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
RealToComplexFunctor
<
T
>
functor
(
dout_data
,
dx_data
,
numel
);
pten
::
funcs
::
RealToComplexFunctor
<
T
>
functor
(
dout_data
,
dx_data
,
numel
);
for_range
(
functor
);
}
};
...
...
paddle/fluid/operators/renorm_op.h
浏览文件 @
5b5656d0
...
...
@@ -17,8 +17,8 @@
#include "math.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
...
...
paddle/fluid/operators/spectral_op.cu
浏览文件 @
5b5656d0
...
...
@@ -20,11 +20,11 @@
#include <vector>
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/spectral_helper.h"
#include "paddle/fluid/operators/spectral_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -115,8 +115,8 @@ void exec_cufft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework
::
Tensor
input_conj
(
input
->
type
());
input_conj
.
mutable_data
<
Ti
>
(
input
->
dims
(),
ctx
.
GetPlace
());
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
input
->
numel
());
math
::
ConjFunctor
<
Ti
>
functor
(
input
->
data
<
Ti
>
(),
input
->
numel
(),
input_conj
.
data
<
Ti
>
());
pten
::
funcs
::
ConjFunctor
<
Ti
>
functor
(
input
->
data
<
Ti
>
(),
input
->
numel
(),
input_conj
.
data
<
Ti
>
());
for_range
(
functor
);
exec_cufft_plan_raw
(
config
,
input_conj
.
data
(),
output
->
data
(),
forward
);
}
else
if
(
fft_type
==
FFTTransformType
::
R2C
&&
!
forward
)
{
...
...
@@ -126,8 +126,8 @@ void exec_cufft_plan(const DeviceContext& ctx, const FFTConfig& config,
exec_cufft_plan_raw
(
config
,
input
->
data
(),
out_conj
.
data
(),
forward
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
output
->
numel
());
math
::
ConjFunctor
<
To
>
functor
(
out_conj
.
data
<
To
>
(),
output
->
numel
(),
output
->
data
<
To
>
());
pten
::
funcs
::
ConjFunctor
<
To
>
functor
(
out_conj
.
data
<
To
>
(),
output
->
numel
(),
output
->
data
<
To
>
());
for_range
(
functor
);
}
else
{
exec_cufft_plan_raw
(
config
,
input
->
data
(),
output
->
data
(),
forward
);
...
...
@@ -227,8 +227,8 @@ void exec_hipfft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework
::
Tensor
input_conj
(
input
->
type
());
input_conj
.
mutable_data
<
Ti
>
(
input
->
dims
(),
ctx
.
GetPlace
());
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
input
->
numel
());
math
::
ConjFunctor
<
Ti
>
functor
(
input
->
data
<
Ti
>
(),
input
->
numel
(),
input_conj
.
data
<
Ti
>
());
pten
::
funcs
::
ConjFunctor
<
Ti
>
functor
(
input
->
data
<
Ti
>
(),
input
->
numel
(),
input_conj
.
data
<
Ti
>
());
for_range
(
functor
);
exec_hipfft_plan_raw
(
config
,
input_conj
.
data
(),
output
->
data
(),
forward
);
}
else
if
(
fft_type
==
FFTTransformType
::
R2C
&&
!
forward
)
{
...
...
@@ -238,8 +238,8 @@ void exec_hipfft_plan(const DeviceContext& ctx, const FFTConfig& config,
exec_hipfft_plan_raw
(
config
,
input
->
data
(),
out_conj
.
data
(),
forward
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
,
output
->
numel
());
math
::
ConjFunctor
<
To
>
functor
(
out_conj
.
data
<
To
>
(),
output
->
numel
(),
output
->
data
<
To
>
());
pten
::
funcs
::
ConjFunctor
<
To
>
functor
(
out_conj
.
data
<
To
>
(),
output
->
numel
(),
output
->
data
<
To
>
());
for_range
(
functor
);
}
else
{
exec_hipfft_plan_raw
(
config
,
input
->
data
(),
output
->
data
(),
forward
);
...
...
paddle/fluid/operators/svd_helper.h
浏览文件 @
5b5656d0
...
...
@@ -25,9 +25,9 @@
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/funcs/math_function.h"
namespace
paddle
{
...
...
@@ -105,7 +105,8 @@ struct RealMulComplexFunctor {
"The image part of y must to be 0"
"but got [%d]"
,
y
.
imag
));
return
platform
::
complex
<
Real
<
T
>>
(
x
.
real
*
y
.
real
,
x
.
imag
*
y
.
real
);
return
platform
::
complex
<
pten
::
funcs
::
Real
<
T
>>
(
x
.
real
*
y
.
real
,
x
.
imag
*
y
.
real
);
}
};
...
...
@@ -390,11 +391,11 @@ struct DeviceIndependenceTensorOperations {
// batch_diag for CPU only
Tensor
BatchDiag
(
const
Tensor
&
x
,
int
batch
)
{
Tensor
out
;
auto
*
x_data
=
x
.
data
<
math
::
Real
<
T
>>
();
auto
*
x_data
=
x
.
data
<
pten
::
funcs
::
Real
<
T
>>
();
auto
numel
=
x
.
numel
();
auto
*
out_data
=
out
.
mutable_data
<
math
::
Real
<
T
>>
(
auto
*
out_data
=
out
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
x
.
dims
(),
context
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
math
::
Real
<
T
>
)));
static_cast
<
size_t
>
(
numel
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
x_dims
=
x
.
dims
();
int
num_dims
=
x_dims
.
size
();
...
...
@@ -654,7 +655,7 @@ struct DeviceIndependenceTensorOperations {
auto
*
out_data
=
out
.
mutable_data
<
T
>
(
x
.
dims
(),
context
.
GetPlace
());
auto
*
x_data
=
x
.
data
<
T
>
();
auto
for_range
=
GetForRange
(
x
.
numel
());
math
::
ConjFunctor
<
T
>
functor
(
x_data
,
x
.
numel
(),
out_data
);
pten
::
funcs
::
ConjFunctor
<
T
>
functor
(
x_data
,
x
.
numel
(),
out_data
);
for_range
(
functor
);
return
out
;
}
...
...
@@ -662,12 +663,12 @@ struct DeviceIndependenceTensorOperations {
Tensor
Real
(
const
Tensor
&
x
)
{
Tensor
out
;
auto
numel
=
x
.
numel
();
auto
*
out_data
=
out
.
mutable_data
<
math
::
Real
<
T
>>
(
auto
*
out_data
=
out
.
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
x
.
dims
(),
context
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
math
::
Real
<
T
>
)));
static_cast
<
size_t
>
(
numel
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
*
x_data
=
x
.
data
<
T
>
();
auto
for_range
=
GetForRange
(
numel
);
math
::
RealFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
pten
::
funcs
::
RealFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
return
out
;
}
...
...
paddle/fluid/operators/svd_op.h
浏览文件 @
5b5656d0
...
...
@@ -17,9 +17,9 @@
#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -46,14 +46,14 @@ class SvdCPUKernel : public framework::OpKernel<T> {
int
col_u
=
full
?
rows
:
k
;
int
col_v
=
full
?
cols
:
k
;
int
batches
=
numel
/
(
rows
*
cols
);
auto
*
U_out
=
U
->
mutable_data
<
math
::
Real
<
T
>>
(
auto
*
U_out
=
U
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batches
*
rows
*
col_u
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
VH_out
=
VH
->
mutable_data
<
math
::
Real
<
T
>>
(
size_t
(
batches
*
rows
*
col_u
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
*
VH_out
=
VH
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batches
*
col_v
*
cols
*
sizeof
(
math
::
Real
<
T
>
)));
auto
*
S_out
=
S
->
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batches
*
k
*
sizeof
(
math
::
Real
<
T
>
)));
size_t
(
batches
*
col_v
*
cols
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
auto
*
S_out
=
S
->
mutable_data
<
pten
::
funcs
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
batches
*
k
*
sizeof
(
pten
::
funcs
::
Real
<
T
>
)));
/*SVD Use the Eigen Library*/
math
::
BatchSvd
<
T
>
(
x_data
,
U_out
,
VH_out
,
S_out
,
rows
,
cols
,
batches
,
full
);
}
...
...
paddle/fluid/operators/triangular_solve_op.h
浏览文件 @
5b5656d0
...
...
@@ -19,10 +19,10 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/solve_op.h"
#include "paddle/fluid/operators/tril_triu_op.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -152,7 +152,7 @@ class TriangularSolveGradKernel : public framework::OpKernel<T> {
// calculate x's conjugate for complex
Tensor
x_conj
(
x
->
type
());
platform
::
ForRange
<
DeviceContext
>
x_for_range
(
dev_ctx
,
x
->
numel
());
math
::
ConjFunctor
<
T
>
x_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
x_functor
(
x
->
data
<
T
>
(),
x
->
numel
(),
x_conj
.
mutable_data
<
T
>
(
x
->
dims
(),
dev_ctx
.
GetPlace
()));
x_for_range
(
x_functor
);
...
...
@@ -179,7 +179,7 @@ class TriangularSolveGradKernel : public framework::OpKernel<T> {
// calculate out's conjugate for complex
Tensor
out_conj
(
out
->
type
());
platform
::
ForRange
<
DeviceContext
>
out_for_range
(
dev_ctx
,
out
->
numel
());
math
::
ConjFunctor
<
T
>
out_functor
(
pten
::
funcs
::
ConjFunctor
<
T
>
out_functor
(
out
->
data
<
T
>
(),
out
->
numel
(),
out_conj
.
mutable_data
<
T
>
(
out
->
dims
(),
dev_ctx
.
GetPlace
()));
out_for_range
(
out_functor
);
...
...
paddle/pten/kernels/cpu/abs_grad_kernel.cc
浏览文件 @
5b5656d0
...
...
@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/pten/common/complex.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/impl/abs_grad_kernel_impl.h"
using
pten
::
dtype
::
complex
;
...
...
paddle/pten/kernels/cpu/abs_kernel.cc
浏览文件 @
5b5656d0
...
...
@@ -13,11 +13,11 @@
// limitations under the License.
#include "paddle/pten/kernels/abs_kernel.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/common/complex.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
pten
{
...
...
@@ -25,12 +25,12 @@ template <typename T, typename Context>
void
AbsKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
)
{
auto
numel
=
x
.
numel
();
auto
*
x_data
=
x
.
data
<
T
>
();
ctx
.
template
Alloc
<
p
addle
::
operators
::
math
::
Real
<
T
>
>
(
out
,
size_t
(
x
.
numel
()
*
sizeof
(
p
addle
::
operators
::
math
::
Real
<
T
>
)));
auto
*
out_data
=
out
->
data
<
p
addle
::
operators
::
math
::
Real
<
T
>>
();
ctx
.
template
Alloc
<
p
ten
::
funcs
::
Real
<
T
>
>
(
out
,
size_t
(
x
.
numel
()
*
sizeof
(
p
ten
::
funcs
::
Real
<
T
>
)));
auto
*
out_data
=
out
->
data
<
p
ten
::
funcs
::
Real
<
T
>>
();
paddle
::
platform
::
ForRange
<
Context
>
for_range
(
ctx
,
numel
);
p
addle
::
operators
::
math
::
AbsFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
p
ten
::
funcs
::
AbsFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
}
...
...
paddle/
fluid/operators/math
/complex_functors.h
→
paddle/
pten/kernels/funcs
/complex_functors.h
浏览文件 @
5b5656d0
...
...
@@ -13,15 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <cmath>
#include <type_traits>
#include "paddle/
fluid/platform
/complex.h"
#include "paddle/
pten/common
/complex.h"
#include "paddle/pten/core/hostdevice.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
namespace
pten
{
namespace
funcs
{
template
<
bool
B
,
typename
T
>
struct
cond
{
...
...
@@ -64,8 +66,8 @@ using select_t = typename select<Head, Tail...>::type;
template
<
typename
T
>
using
Real
=
select_t
<
cond
<
std
::
is_same
<
T
,
p
latform
::
complex
<
float
>>::
value
,
float
>
,
cond
<
std
::
is_same
<
T
,
p
latform
::
complex
<
double
>>::
value
,
double
>
,
select_t
<
cond
<
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
float
>>::
value
,
float
>
,
cond
<
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
double
>>::
value
,
double
>
,
T
>
;
template
<
typename
T
,
typename
RealT
>
...
...
@@ -77,13 +79,13 @@ using NoComplex = typename std::enable_if<std::is_same<T, RealT>::value>::type;
template
<
typename
T
>
using
EnableComplex
=
typename
std
::
enable_if
<
std
::
is_same
<
T
,
p
latform
::
complex
<
float
>>::
value
||
std
::
is_same
<
T
,
p
latform
::
complex
<
double
>>::
value
>::
type
;
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
float
>>::
value
||
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
double
>>::
value
>::
type
;
template
<
typename
T
>
using
DisableComplex
=
typename
std
::
enable_if
<
!
std
::
is_same
<
T
,
p
latform
::
complex
<
float
>>::
value
&&
!
std
::
is_same
<
T
,
p
latform
::
complex
<
double
>>::
value
>::
type
;
!
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
float
>>::
value
&&
!
std
::
is_same
<
T
,
p
ten
::
dtype
::
complex
<
double
>>::
value
>::
type
;
template
<
typename
T
,
typename
Enable
=
void
>
struct
RealFunctor
;
...
...
@@ -154,8 +156,7 @@ struct AbsFunctor<T, NoComplex<T, Real<T>>> {
template
<
typename
T
>
struct
AbsGradFunctor
{
AbsGradFunctor
(
const
math
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
output
,
int64_t
numel
)
AbsGradFunctor
(
const
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
output
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
...
...
@@ -166,52 +167,55 @@ struct AbsGradFunctor {
}
}
const
math
::
Real
<
T
>*
dout_
;
const
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
output_
;
int64_t
numel_
;
};
template
<
>
struct
AbsGradFunctor
<
paddle
::
platform
::
complex
<
float
>>
{
AbsGradFunctor
(
const
float
*
dout
,
const
paddle
::
platform
::
complex
<
float
>*
x
,
paddle
::
platform
::
complex
<
float
>*
output
,
int64_t
numel
)
struct
AbsGradFunctor
<
pten
::
dtype
::
complex
<
float
>>
{
AbsGradFunctor
(
const
float
*
dout
,
const
pten
::
dtype
::
complex
<
float
>*
x
,
pten
::
dtype
::
complex
<
float
>*
output
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
p
addle
::
platform
::
complex
<
float
>
(
0
))
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
float
>
(
0
);
if
(
x_
[
idx
]
==
p
ten
::
dtype
::
complex
<
float
>
(
0
))
{
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
float
>
(
0
);
}
else
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
float
>
(
dout_
[
idx
])
*
(
x_
[
idx
]
/
p
addle
::
platform
::
complex
<
float
>
(
abs
(
x_
[
idx
])));
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
float
>
(
dout_
[
idx
])
*
(
x_
[
idx
]
/
p
ten
::
dtype
::
complex
<
float
>
(
abs
(
x_
[
idx
])));
}
}
const
float
*
dout_
;
const
p
addle
::
platform
::
complex
<
float
>*
x_
;
p
addle
::
platform
::
complex
<
float
>*
output_
;
const
p
ten
::
dtype
::
complex
<
float
>*
x_
;
p
ten
::
dtype
::
complex
<
float
>*
output_
;
int64_t
numel_
;
};
template
<
>
struct
AbsGradFunctor
<
paddle
::
platform
::
complex
<
double
>>
{
AbsGradFunctor
(
const
double
*
dout
,
const
paddle
::
platform
::
complex
<
double
>*
x
,
paddle
::
platform
::
complex
<
double
>*
output
,
int64_t
numel
)
struct
AbsGradFunctor
<
pten
::
dtype
::
complex
<
double
>>
{
AbsGradFunctor
(
const
double
*
dout
,
const
pten
::
dtype
::
complex
<
double
>*
x
,
pten
::
dtype
::
complex
<
double
>*
output
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
p
addle
::
platform
::
complex
<
double
>
(
0
))
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
double
>
(
0
);
if
(
x_
[
idx
]
==
p
ten
::
dtype
::
complex
<
double
>
(
0
))
{
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
double
>
(
0
);
}
else
{
output_
[
idx
]
=
paddle
::
platform
::
complex
<
double
>
(
dout_
[
idx
])
*
(
x_
[
idx
]
/
paddle
::
platform
::
complex
<
double
>
(
abs
(
x_
[
idx
])));
output_
[
idx
]
=
pten
::
dtype
::
complex
<
double
>
(
dout_
[
idx
])
*
(
x_
[
idx
]
/
pten
::
dtype
::
complex
<
double
>
(
abs
(
x_
[
idx
])));
}
}
const
double
*
dout_
;
const
p
addle
::
platform
::
complex
<
double
>*
x_
;
p
addle
::
platform
::
complex
<
double
>*
output_
;
const
p
ten
::
dtype
::
complex
<
double
>*
x_
;
p
ten
::
dtype
::
complex
<
double
>*
output_
;
int64_t
numel_
;
};
...
...
@@ -235,46 +239,48 @@ struct AbsGradGradFunctor {
};
template
<
>
struct
AbsGradGradFunctor
<
paddle
::
platform
::
complex
<
double
>>
{
AbsGradGradFunctor
(
const
paddle
::
platform
::
complex
<
double
>*
ddx
,
const
paddle
::
platform
::
complex
<
double
>*
x
,
paddle
::
platform
::
complex
<
double
>*
output
,
int64_t
numel
)
struct
AbsGradGradFunctor
<
pten
::
dtype
::
complex
<
double
>>
{
AbsGradGradFunctor
(
const
pten
::
dtype
::
complex
<
double
>*
ddx
,
const
pten
::
dtype
::
complex
<
double
>*
x
,
pten
::
dtype
::
complex
<
double
>*
output
,
int64_t
numel
)
:
ddx_
(
ddx
),
x_
(
x
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
p
addle
::
platform
::
complex
<
double
>
(
0
))
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
double
>
(
0
);
if
(
x_
[
idx
]
==
p
ten
::
dtype
::
complex
<
double
>
(
0
))
{
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
double
>
(
0
);
}
else
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
double
>
(
ddx_
[
idx
])
*
x_
[
idx
]
/
p
addle
::
platform
::
complex
<
double
>
(
abs
(
x_
[
idx
]));
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
double
>
(
ddx_
[
idx
])
*
x_
[
idx
]
/
p
ten
::
dtype
::
complex
<
double
>
(
abs
(
x_
[
idx
]));
}
}
const
p
addle
::
platform
::
complex
<
double
>*
ddx_
;
const
p
addle
::
platform
::
complex
<
double
>*
x_
;
p
addle
::
platform
::
complex
<
double
>*
output_
;
const
p
ten
::
dtype
::
complex
<
double
>*
ddx_
;
const
p
ten
::
dtype
::
complex
<
double
>*
x_
;
p
ten
::
dtype
::
complex
<
double
>*
output_
;
int64_t
numel_
;
};
template
<
>
struct
AbsGradGradFunctor
<
paddle
::
platform
::
complex
<
float
>>
{
AbsGradGradFunctor
(
const
paddle
::
platform
::
complex
<
float
>*
ddx
,
const
paddle
::
platform
::
complex
<
float
>*
x
,
paddle
::
platform
::
complex
<
float
>*
output
,
int64_t
numel
)
struct
AbsGradGradFunctor
<
pten
::
dtype
::
complex
<
float
>>
{
AbsGradGradFunctor
(
const
pten
::
dtype
::
complex
<
float
>*
ddx
,
const
pten
::
dtype
::
complex
<
float
>*
x
,
pten
::
dtype
::
complex
<
float
>*
output
,
int64_t
numel
)
:
ddx_
(
ddx
),
x_
(
x
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
p
addle
::
platform
::
complex
<
float
>
(
0
))
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
float
>
(
0
);
if
(
x_
[
idx
]
==
p
ten
::
dtype
::
complex
<
float
>
(
0
))
{
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
float
>
(
0
);
}
else
{
output_
[
idx
]
=
p
addle
::
platform
::
complex
<
float
>
(
ddx_
[
idx
])
*
x_
[
idx
]
/
p
addle
::
platform
::
complex
<
float
>
(
abs
(
x_
[
idx
]));
output_
[
idx
]
=
p
ten
::
dtype
::
complex
<
float
>
(
ddx_
[
idx
])
*
x_
[
idx
]
/
p
ten
::
dtype
::
complex
<
float
>
(
abs
(
x_
[
idx
]));
}
}
const
p
addle
::
platform
::
complex
<
float
>*
ddx_
;
const
p
addle
::
platform
::
complex
<
float
>*
x_
;
p
addle
::
platform
::
complex
<
float
>*
output_
;
const
p
ten
::
dtype
::
complex
<
float
>*
ddx_
;
const
p
ten
::
dtype
::
complex
<
float
>*
x_
;
p
ten
::
dtype
::
complex
<
float
>*
output_
;
int64_t
numel_
;
};
template
<
typename
T
,
typename
Enable
=
void
>
...
...
@@ -318,8 +324,10 @@ struct RealImagToComplexFunctor;
template
<
typename
T
>
struct
RealImagToComplexFunctor
<
T
,
Complex
<
T
,
Real
<
T
>>>
{
RealImagToComplexFunctor
(
const
Real
<
T
>*
input_real
,
const
Real
<
T
>*
input_imag
,
T
*
output
,
int64_t
numel
)
RealImagToComplexFunctor
(
const
Real
<
T
>*
input_real
,
const
Real
<
T
>*
input_imag
,
T
*
output
,
int64_t
numel
)
:
input_real_
(
input_real
),
input_imag_
(
input_imag
),
output_
(
output
),
...
...
@@ -363,6 +371,84 @@ struct ConjFunctor<T, DisableComplex<T>> {
T
*
output_
;
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleFunctor
;
// angel function for complex
template
<
typename
T
>
struct
AngleFunctor
<
T
,
pten
::
funcs
::
Complex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
pten
::
funcs
::
Real
<
T
>*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
arg
(
input_
[
idx
]);
}
const
T
*
input_
;
pten
::
funcs
::
Real
<
T
>*
output_
;
int64_t
numel_
;
};
// angel function for real
template
<
typename
T
>
struct
AngleFunctor
<
T
,
pten
::
funcs
::
NoComplex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
T
*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
input_
[
idx
]
<
static_cast
<
T
>
(
0
)
?
M_PI
:
0
;
}
const
T
*
input_
;
T
*
output_
;
int64_t
numel_
;
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleGradFunctor
;
// angle grad for complex
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
pten
::
funcs
::
Complex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
AngleGradFunctor
(
const
pten
::
funcs
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
T
(
0
))
{
dx_
[
idx
]
=
T
(
0
);
}
else
{
const
pten
::
funcs
::
Real
<
T
>
r_square
=
x_
[
idx
].
real
*
x_
[
idx
].
real
+
x_
[
idx
].
imag
*
x_
[
idx
].
imag
;
dx_
[
idx
]
=
T
(
-
dout_
[
idx
]
*
x_
[
idx
].
imag
/
r_square
,
dout_
[
idx
]
*
x_
[
idx
].
real
/
r_square
);
}
}
const
pten
::
funcs
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
// angle grad for real
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
pten
::
funcs
::
NoComplex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
AngleGradFunctor
(
const
pten
::
funcs
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
dx_
[
idx
]
=
0
;
}
const
pten
::
funcs
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
}
// namespace funcs
}
// namespace pten
paddle/pten/kernels/gpu/abs_kernel.cu
浏览文件 @
5b5656d0
...
...
@@ -14,11 +14,11 @@
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/abs_kernel.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
namespace
pten
{
...
...
@@ -27,19 +27,14 @@ template <typename T, typename Enable = void>
struct
CudaAbsFunctor
;
template
<
typename
T
>
struct
CudaAbsFunctor
<
T
,
paddle
::
operators
::
math
::
Complex
<
T
,
paddle
::
operators
::
math
::
Real
<
T
>>>
{
__device__
__forceinline__
paddle
::
operators
::
math
::
Real
<
T
>
operator
()(
const
T
x
)
const
{
struct
CudaAbsFunctor
<
T
,
pten
::
funcs
::
Complex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
__device__
__forceinline__
pten
::
funcs
::
Real
<
T
>
operator
()(
const
T
x
)
const
{
return
abs
(
x
);
}
};
template
<
typename
T
>
struct
CudaAbsFunctor
<
T
,
paddle
::
operators
::
math
::
NoComplex
<
T
,
paddle
::
operators
::
math
::
Real
<
T
>>>
{
struct
CudaAbsFunctor
<
T
,
pten
::
funcs
::
NoComplex
<
T
,
pten
::
funcs
::
Real
<
T
>>>
{
__device__
__forceinline__
T
operator
()(
const
T
x
)
const
{
return
std
::
abs
(
x
);
}
...
...
@@ -47,12 +42,12 @@ struct CudaAbsFunctor<
template
<
typename
T
,
typename
Context
>
void
AbsKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
)
{
ctx
.
template
Alloc
<
p
addle
::
operators
::
math
::
Real
<
T
>
>
(
out
);
ctx
.
template
Alloc
<
p
ten
::
funcs
::
Real
<
T
>
>
(
out
);
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
};
std
::
vector
<
DenseTensor
*>
outs
=
{
out
};
auto
functor
=
CudaAbsFunctor
<
T
>
();
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
p
addle
::
operators
::
math
::
Real
<
T
>>
(
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
p
ten
::
funcs
::
Real
<
T
>>
(
ctx
,
ins
,
&
outs
,
functor
);
}
...
...
paddle/pten/kernels/impl/abs_grad_kernel_impl.h
浏览文件 @
5b5656d0
...
...
@@ -14,9 +14,9 @@
#pragma once
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/abs_grad_kernel.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
pten
{
...
...
@@ -26,15 +26,14 @@ void AbsGradKernel(const Context& ctx,
const
DenseTensor
&
dout
,
DenseTensor
*
dx
)
{
auto
numel
=
dout
.
numel
();
auto
*
dout_data
=
dout
.
data
<
p
addle
::
operators
::
math
::
Real
<
T
>>
();
auto
*
dout_data
=
dout
.
data
<
p
ten
::
funcs
::
Real
<
T
>>
();
auto
*
x_data
=
x
.
data
<
T
>
();
ctx
.
template
Alloc
<
T
>(
dx
,
static_cast
<
size_t
>
(
numel
*
sizeof
(
T
)));
auto
*
dx_data
=
dx
->
data
<
T
>
();
paddle
::
platform
::
ForRange
<
Context
>
for_range
(
ctx
,
numel
);
paddle
::
operators
::
math
::
AbsGradFunctor
<
T
>
functor
(
dout_data
,
x_data
,
dx_data
,
numel
);
pten
::
funcs
::
AbsGradFunctor
<
T
>
functor
(
dout_data
,
x_data
,
dx_data
,
numel
);
for_range
(
functor
);
}
...
...
@@ -50,7 +49,7 @@ void AbsDoubleGradKernel(const Context& ctx,
auto
*
ddout_data
=
ddout
->
data
<
T
>
();
paddle
::
platform
::
ForRange
<
Context
>
for_range
(
ctx
,
numel
);
p
addle
::
operators
::
math
::
AbsGradGradFunctor
<
T
>
functor
(
p
ten
::
funcs
::
AbsGradGradFunctor
<
T
>
functor
(
ddx_data
,
x_data
,
ddout_data
,
numel
);
for_range
(
functor
);
}
...
...
paddle/pten/kernels/impl/complex_kernel_impl.h
浏览文件 @
5b5656d0
...
...
@@ -15,8 +15,8 @@
#pragma once
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/kernels/funcs/complex_functors.h"
namespace
pten
{
...
...
@@ -29,7 +29,7 @@ void ConjKernel(const Context& dev_ctx,
auto
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
paddle
::
platform
::
ForRange
<
Context
>
for_range
(
dev_ctx
,
numel
);
p
addle
::
operators
::
math
::
ConjFunctor
<
T
>
functor
(
x_data
,
numel
,
out_data
);
p
ten
::
funcs
::
ConjFunctor
<
T
>
functor
(
x_data
,
numel
,
out_data
);
for_range
(
functor
);
}
...
...
paddle/pten/kernels/impl/dot_grad_kernel_impl.h
浏览文件 @
5b5656d0
...
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/pten/kernels/complex_kernel.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/
fluid/operators/math
/complex_functors.h"
#include "paddle/
pten/kernels/funcs
/complex_functors.h"
namespace
pten
{
...
...
@@ -35,9 +35,7 @@ struct DotGradFunction {
};
template
<
typename
DeviceContext
,
typename
T
>
struct
DotGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
EnableComplex
<
T
>>
{
struct
DotGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
EnableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
tensor_x
,
const
DenseTensor
*
tensor_y
,
...
...
@@ -133,9 +131,7 @@ struct DotGradFunction<DeviceContext,
};
template
<
typename
DeviceContext
,
typename
T
>
struct
DotGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
DisableComplex
<
T
>>
{
struct
DotGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
DisableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
tensor_x
,
const
DenseTensor
*
tensor_y
,
...
...
@@ -221,9 +217,7 @@ struct DotDoubleGradFunction {
};
template
<
typename
DeviceContext
,
typename
T
>
struct
DotDoubleGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
EnableComplex
<
T
>>
{
struct
DotDoubleGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
EnableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
tensor_x
,
const
DenseTensor
*
tensor_y
,
...
...
@@ -334,9 +328,7 @@ struct DotDoubleGradFunction<DeviceContext,
};
template
<
typename
DeviceContext
,
typename
T
>
struct
DotDoubleGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
DisableComplex
<
T
>>
{
struct
DotDoubleGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
DisableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
tensor_x
,
const
DenseTensor
*
tensor_y
,
...
...
@@ -461,9 +453,7 @@ struct DotTripleGradFunction {
// TODO(wuweilong): enable this function when the unittests framewark for multi
// grad is ok (dtype: complex64 or complex128).
template
<
typename
DeviceContext
,
typename
T
>
struct
DotTripleGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
EnableComplex
<
T
>>
{
struct
DotTripleGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
EnableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
in_tensor_x
,
const
DenseTensor
*
in_tensor_y
,
...
...
@@ -656,9 +646,7 @@ struct DotTripleGradFunction<DeviceContext,
};
template
<
typename
DeviceContext
,
typename
T
>
struct
DotTripleGradFunction
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
DisableComplex
<
T
>>
{
struct
DotTripleGradFunction
<
DeviceContext
,
T
,
pten
::
funcs
::
DisableComplex
<
T
>>
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
DenseTensor
*
in_tensor_x
,
const
DenseTensor
*
in_tensor_y
,
...
...
paddle/pten/kernels/impl/matmul_kernel_impl.h
浏览文件 @
5b5656d0
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/
fluid/operators/math
/complex_functors.h"
#include "paddle/
pten/kernels/funcs
/complex_functors.h"
#include "paddle/pten/core/dense_tensor.h"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录