test_profiler.py 8.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import os
17
import tempfile
18
import numpy as np
19
import paddle
20
import paddle.utils as utils
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
25
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
26

K
kuizhiqing 已提交
27 28
from paddle.utils.flops import flops

D
dangqingqing 已提交
29

30
class TestProfiler(unittest.TestCase):
31 32 33 34
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

35
    def build_program(self, compile_program=True):
36 37 38 39
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
40 41
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
42 43 44
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True
            )
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
57 58 59
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
60
            avg_cost = paddle.mean(cost)
F
fengjiayi 已提交
61
            batch_size = fluid.layers.create_tensor(dtype='int64')
62 63 64
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size
            )
65

66
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
67 68
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

69
        if compile_program:
70 71 72 73
            # TODO(luotao): profiler tool may have bug with multi-thread parallel executor.
            # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = 1
74
            train_program = fluid.compiler.CompiledProgram(
75 76 77 78
                main_program
            ).with_data_parallel(
                loss_name=avg_cost.name, exec_strategy=exec_strategy
            )
79 80 81 82 83 84 85 86 87 88
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
89
        data = open(profile_path, 'rb').read()
90
        if len(data) > 0:
91 92 93 94 95 96
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
97 98
                        "MEM"
                    ):
99 100
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
101 102
                            % event.name
                        )
103
                elif event.type == profiler_pb2.Event.CPU and (
104 105 106
                    event.name.startswith("Driver API")
                    or event.name.startswith("Runtime API")
                ):
107
                    print("Warning: unregister", event.name)
108

T
Tao Luo 已提交
109
    def run_iter(self, exe, main_program, fetch_list):
110 111
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        outs = exe.run(
            main_program, feed={'x': x, 'y': y}, fetch_list=fetch_list
        )

    def net_profiler(
        self,
        exe,
        state,
        tracer_option,
        batch_range=None,
        use_parallel_executor=False,
        use_new_api=False,
    ):
        (
            main_program,
            startup_program,
            avg_cost,
            batch_size,
            batch_acc,
        ) = self.build_program(compile_program=use_parallel_executor)
132 133 134 135 136 137 138 139
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
140 141 142
                    self.run_iter(
                        exe, main_program, [avg_cost, batch_acc, batch_size]
                    )
143
        else:
144 145 146 147 148
            options = utils.ProfilerOptions(
                options={
                    'state': state,
                    'sorted_key': 'total',
                    'tracer_level': tracer_option,
149 150 151 152 153 154
                    'batch_range': [0, 10]
                    if batch_range is None
                    else batch_range,
                    'profile_path': profile_path,
                }
            )
155 156
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
157 158 159
                    self.run_iter(
                        exe, main_program, [avg_cost, batch_acc, batch_size]
                    )
160 161 162
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()
163 164 165
        # TODO(luotao): check why nccl kernel in profile result.
        # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
        # self.check_profile_result(profile_path)
166

D
dangqingqing 已提交
167
    def test_cpu_profiler(self):
168 169
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
170 171 172 173 174 175 176 177 178 179 180
            self.net_profiler(
                exe,
                'CPU',
                "Default",
                batch_range=[5, 10],
                use_new_api=use_new_api,
            )

    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "profiler is enabled only with GPU"
    )
D
dangqingqing 已提交
181
    def test_cuda_profiler(self):
182 183
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
184 185 186 187 188 189 190 191 192 193 194
            self.net_profiler(
                exe,
                'GPU',
                "OpDetail",
                batch_range=[0, 10],
                use_new_api=use_new_api,
            )

    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "profiler is enabled only with GPU"
    )
195
    def test_all_profiler(self):
196 197
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
198 199 200 201 202 203 204
            self.net_profiler(
                exe,
                'All',
                "AllOpDetail",
                batch_range=None,
                use_new_api=use_new_api,
            )
205 206 207 208 209


class TestProfilerAPIError(unittest.TestCase):
    def test_errors(self):
        options = utils.ProfilerOptions()
210 211
        self.assertIsNone(options['profile_path'])
        self.assertIsNone(options['timeline_path'])
212 213 214 215 216 217 218 219 220 221 222 223

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
224

D
dangqingqing 已提交
225

K
kuizhiqing 已提交
226 227 228 229 230 231
class TestFLOPSAPI(unittest.TestCase):
    def test_flops(self):
        self.assertTrue(flops('relu', ([12, 12],), output=4) == 144)
        self.assertTrue(flops('dropout', ([12, 12],), **{'output': 4}) == 0)


232
if __name__ == '__main__':
233
    paddle.enable_static()
234
    unittest.main()