test_profiler.py 4.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import numpy as np
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
D
dangqingqing 已提交
24 25


26
class TestProfiler(unittest.TestCase):
X
Xin Pan 已提交
27
    def net_profiler(self, state, profile_path='/tmp/profile'):
28 29 30 31 32
        startup_program = fluid.Program()
        main_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True)
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
49 50 51
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
52
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
53 54 55
            batch_size = fluid.layers.create_tensor(dtype='int64')
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size)
56

57
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
58 59 60 61 62
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

        place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)
63

F
fengjiayi 已提交
64
        pass_acc_calculator = fluid.average.WeightedAverage()
F
fengjiayi 已提交
65
        with profiler.profiler(state, 'total', profile_path) as prof:
66 67 68 69 70
            for iter in range(10):
                if iter == 2:
                    profiler.reset_profiler()
                x = np.random.random((32, 784)).astype("float32")
                y = np.random.randint(0, 10, (32, 1)).astype("int64")
71

72 73 74
                outs = exe.run(main_program,
                               feed={'x': x,
                                     'y': y},
F
fengjiayi 已提交
75
                               fetch_list=[avg_cost, batch_acc, batch_size])
76
                acc = np.array(outs[1])
F
fengjiayi 已提交
77 78 79
                b_size = np.array(outs[2])
                pass_acc_calculator.add(value=acc, weight=b_size)
                pass_acc = pass_acc_calculator.eval()
80

D
dangqingqing 已提交
81 82
    def test_cpu_profiler(self):
        self.net_profiler('CPU')
83

84 85
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
86 87
    def test_cuda_profiler(self):
        self.net_profiler('GPU')
88

89 90
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
91
    def test_all_profiler(self):
X
Xin Pan 已提交
92
        self.net_profiler('All', '/tmp/profile_out')
93
        with open('/tmp/profile_out', 'rb') as f:
X
Xin Pan 已提交
94
            self.assertGreater(len(f.read()), 0)
95

D
dangqingqing 已提交
96

97 98
if __name__ == '__main__':
    unittest.main()