test_profiler.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import tempfile
20
import numpy as np
21
import paddle.utils as utils
22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
26
from paddle.fluid import compiler, Program, program_guard
27
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
28 29


30
class TestProfiler(unittest.TestCase):
31 32 33 34
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

35
    def build_program(self, compile_program=True):
36 37 38 39
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True)
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
56 57 58
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
59
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
60 61 62
            batch_size = fluid.layers.create_tensor(dtype='int64')
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size)
63

64
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
65 66
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

67 68 69 70 71 72 73 74 75 76 77 78 79
        if compile_program:
            train_program = fluid.compiler.CompiledProgram(
                main_program).with_data_parallel(loss_name=avg_cost.name)
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
80
        data = open(profile_path, 'rb').read()
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        if (len(data) > 0):
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
                            "MEM"):
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                            % event.name)
                elif event.type == profiler_pb2.Event.CPU and (
                        event.name.startswith("Driver API") or
                        event.name.startswith("Runtime API")):
                    print("Warning: unregister", event.name)
96

T
Tao Luo 已提交
97
    def run_iter(self, exe, main_program, fetch_list):
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
        outs = exe.run(main_program,
                       feed={'x': x,
                             'y': y},
                       fetch_list=fetch_list)

    def net_profiler(self,
                     exe,
                     state,
                     tracer_option,
                     batch_range=None,
                     use_parallel_executor=False,
                     use_new_api=False):
        main_program, startup_program, avg_cost, batch_size, batch_acc = self.build_program(
            compile_program=use_parallel_executor)
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
123
                                  [avg_cost, batch_acc, batch_size])
124 125 126 127 128 129 130 131 132 133 134
        else:
            options = utils.ProfilerOptions(options={
                'state': state,
                'sorted_key': 'total',
                'tracer_level': tracer_option,
                'batch_range': [0, 10] if batch_range is None else batch_range,
                'profile_path': profile_path
            })
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
135
                                  [avg_cost, batch_acc, batch_size])
136 137 138 139 140 141
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()

        self.check_profile_result(profile_path)

D
dangqingqing 已提交
142
    def test_cpu_profiler(self):
143 144 145 146 147 148 149 150
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
            self.net_profiler(
                exe,
                'CPU',
                "Default",
                batch_range=[5, 10],
                use_new_api=use_new_api)
151
            #self.net_profiler(exe, 'CPU', "Default", use_parallel_executor=True)
152

153 154
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
155
    def test_cuda_profiler(self):
156 157 158 159 160 161
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
            self.net_profiler(
                exe,
                'GPU',
                "OpDetail",
T
Tao Luo 已提交
162
                batch_range=[0, 10],
163
                use_new_api=use_new_api)
164 165
            #self.net_profiler(
            #    exe, 'GPU', "OpDetail", use_parallel_executor=True)
166

167 168
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
169
    def test_all_profiler(self):
170 171 172 173 174 175 176 177
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
            self.net_profiler(
                exe,
                'All',
                "AllOpDetail",
                batch_range=None,
                use_new_api=use_new_api)
178 179
            #self.net_profiler(
            #    exe, 'All', "AllOpDetail", use_parallel_executor=True)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198


class TestProfilerAPIError(unittest.TestCase):
    def test_errors(self):
        options = utils.ProfilerOptions()
        self.assertTrue(options['profile_path'] is None)
        self.assertTrue(options['timeline_path'] is None)

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
199

D
dangqingqing 已提交
200

201 202
if __name__ == '__main__':
    unittest.main()