test_profiler.py 8.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import tempfile
20
import numpy as np
21
import paddle
22
import paddle.utils as utils
23 24 25 26
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
28
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
29 30


31
class TestProfiler(unittest.TestCase):
32

33 34 35 36
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

37
    def build_program(self, compile_program=True):
38 39 40 41
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
42 43
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
44 45 46
            counter = fluid.layers.zeros(shape=[1],
                                         dtype='int64',
                                         force_cpu=True)
X
Xin Pan 已提交
47 48 49 50 51 52 53 54 55 56 57 58
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
59 60 61
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
62
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
63
            batch_size = fluid.layers.create_tensor(dtype='int64')
64 65 66
            batch_acc = fluid.layers.accuracy(input=predict,
                                              label=label,
                                              total=batch_size)
67

68
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
69 70
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

71
        if compile_program:
72 73 74 75
            # TODO(luotao): profiler tool may have bug with multi-thread parallel executor.
            # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = 1
76
            train_program = fluid.compiler.CompiledProgram(
77 78
                main_program).with_data_parallel(loss_name=avg_cost.name,
                                                 exec_strategy=exec_strategy)
79 80 81 82 83 84 85 86 87 88
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
89
        data = open(profile_path, 'rb').read()
90 91 92 93 94 95 96 97 98 99 100 101
        if (len(data) > 0):
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
                            "MEM"):
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                            % event.name)
                elif event.type == profiler_pb2.Event.CPU and (
102 103
                        event.name.startswith("Driver API")
                        or event.name.startswith("Runtime API")):
104
                    print("Warning: unregister", event.name)
105

T
Tao Luo 已提交
106
    def run_iter(self, exe, main_program, fetch_list):
107 108 109
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
        outs = exe.run(main_program,
110 111 112 113
                       feed={
                           'x': x,
                           'y': y
                       },
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                       fetch_list=fetch_list)

    def net_profiler(self,
                     exe,
                     state,
                     tracer_option,
                     batch_range=None,
                     use_parallel_executor=False,
                     use_new_api=False):
        main_program, startup_program, avg_cost, batch_size, batch_acc = self.build_program(
            compile_program=use_parallel_executor)
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
134
                                  [avg_cost, batch_acc, batch_size])
135
        else:
136 137 138 139 140 141 142 143 144
            options = utils.ProfilerOptions(
                options={
                    'state': state,
                    'sorted_key': 'total',
                    'tracer_level': tracer_option,
                    'batch_range':
                    [0, 10] if batch_range is None else batch_range,
                    'profile_path': profile_path
                })
145 146 147
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
148
                                  [avg_cost, batch_acc, batch_size])
149 150 151
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()
152 153 154
        # TODO(luotao): check why nccl kernel in profile result.
        # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
        # self.check_profile_result(profile_path)
155

D
dangqingqing 已提交
156
    def test_cpu_profiler(self):
157 158
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
159 160 161 162 163
            self.net_profiler(exe,
                              'CPU',
                              "Default",
                              batch_range=[5, 10],
                              use_new_api=use_new_api)
164

165 166
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
167
    def test_cuda_profiler(self):
168 169
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
170 171 172 173 174
            self.net_profiler(exe,
                              'GPU',
                              "OpDetail",
                              batch_range=[0, 10],
                              use_new_api=use_new_api)
175

176 177
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
178
    def test_all_profiler(self):
179 180
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
181 182 183 184 185
            self.net_profiler(exe,
                              'All',
                              "AllOpDetail",
                              batch_range=None,
                              use_new_api=use_new_api)
186 187 188


class TestProfilerAPIError(unittest.TestCase):
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def test_errors(self):
        options = utils.ProfilerOptions()
        self.assertTrue(options['profile_path'] is None)
        self.assertTrue(options['timeline_path'] is None)

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
206

D
dangqingqing 已提交
207

208
if __name__ == '__main__':
209
    paddle.enable_static()
210
    unittest.main()