test_jit_save_load.py 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19
import shutil
20 21
import unittest
import numpy as np
L
Leo Chen 已提交
22
import paddle
23
from paddle.static import InputSpec
24
import paddle.fluid as fluid
25
from paddle.fluid.layers.utils import flatten
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.dygraph import declarative, ProgramTranslator
28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
29
from paddle.fluid import unique_name
30 31

BATCH_SIZE = 32
32
BATCH_NUM = 10
33 34 35
SEED = 10


36
def random_batch_reader(input_size, label_size):
37

38
    def _get_random_inputs_and_labels(input_size, label_size):
39
        np.random.seed(SEED)
40 41 42
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
43 44 45

    def __reader__():
        for _ in range(BATCH_NUM):
46 47 48
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
49 50 51 52 53

    return __reader__


class LinearNet(fluid.dygraph.Layer):
54

55 56 57 58 59 60 61 62 63
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


64
class LinearNetWithInputSpec(fluid.dygraph.Layer):
65

66 67 68 69 70 71 72 73 74
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


75
class LinearNetNotDeclarative(fluid.dygraph.Layer):
76

77 78 79 80 81 82 83 84
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


85
class LinerNetWithLabel(paddle.nn.Layer):
86

87 88 89 90 91
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
92 93
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
94 95 96 97 98 99 100 101
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


C
Chen Weihang 已提交
102
class LinerNetWithPruneInput(paddle.nn.Layer):
103

C
Chen Weihang 已提交
104 105 106 107 108
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
109 110
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
111 112 113 114 115 116 117 118 119
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
120

C
Chen Weihang 已提交
121 122 123 124 125
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
126 127
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
128 129 130 131 132 133
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


134
class LinearNetReturnLoss(fluid.dygraph.Layer):
135

136 137 138 139 140 141 142 143 144 145 146 147
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


148
class LinearNetMultiInput(fluid.dygraph.Layer):
149

150 151 152 153 154 155
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
156 157
        InputSpec([None, 8], dtype='float32'),
        InputSpec([None, 8], dtype='float32')
158 159 160 161 162 163 164 165
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


166
class LinearNetMultiInput1(fluid.dygraph.Layer):
167

168 169 170 171 172
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput1, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

173 174
    @declarative(input_spec=(InputSpec([None, 8], dtype='float32'),
                             InputSpec([None, 8], dtype='float32')))
175 176 177 178 179 180 181
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


182
class MultiLoadingLinearNet(fluid.dygraph.Layer):
183

184 185 186
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
187 188
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
189 190 191 192 193 194 195 196 197 198 199

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
200

201 202 203 204 205 206 207 208 209 210 211 212 213
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


214
class LinearNetWithNestOut(fluid.dygraph.Layer):
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


230
class LinearNetWithDictInput(paddle.nn.Layer):
231

232 233 234 235 236
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
237 238
        'img':
        InputSpec(shape=[None, 8], dtype='float32', name='img')
239
    }, {
240 241
        'label':
        InputSpec(shape=[None, 1], dtype='int64', name='label')
242 243 244 245 246 247 248 249
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


250
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
251

252 253 254 255 256 257 258 259 260
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


261
class EmptyLayer(paddle.nn.Layer):
262

263 264 265 266 267 268 269 270 271
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
272

273 274 275 276 277 278 279 280
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


281
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


302
def train(layer, input_size=784, label_size=1):
303
    # create optimizer
304 305
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
306 307
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
308 309
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
310 311 312 313 314 315 316 317 318 319 320
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
321
        sgd.minimize(avg_loss)
322 323 324 325
        layer.clear_gradients()
    return [img], layer, avg_loss


326 327
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
328 329
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
330 331
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
332 333
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
334 335 336 337 338 339 340 341 342 343 344 345 346
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


347
class TestJitSaveLoad(unittest.TestCase):
348

349
    def setUp(self):
350
        self.model_path = "test_jit_save_load/model"
351 352 353
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
354
        paddle.seed(SEED)
L
Leo Chen 已提交
355
        paddle.framework.random._manual_program_seed(SEED)
356

357
    def train_and_save_model(self, model_path=None):
358 359
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
360
        final_model_path = model_path if model_path else self.model_path
361
        orig_input_types = [type(x) for x in example_inputs]
362 363 364
        paddle.jit.save(layer=layer,
                        path=final_model_path,
                        input_spec=example_inputs)
365 366
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
367 368
        return layer

369
    def test_save_load(self):
370 371 372
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
373
        loaded_layer = paddle.jit.load(self.model_path)
374 375 376 377 378
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
379
        train_layer.eval()
380
        infer_layer.eval()
381 382 383 384
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
385 386
            np.array_equal(train_layer(x).numpy(),
                           infer_layer(x).numpy()))
387

388 389
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
390 391
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
392 393
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
394 395 396
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

397 398
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
399
        # construct new model
400
        new_layer = LinearNet(784, 1)
401
        orig_state_dict = new_layer.state_dict()
402
        load_state_dict = paddle.load(self.model_path)
403 404 405
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
406 407 408 409 410
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
411 412
            np.array_equal(train_layer(x).numpy(),
                           new_layer(x).numpy()))
413

414
    def test_load_dygraph_no_path(self):
415
        model_path = "test_jit_save_load.no_path/model_path"
416 417 418
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

419 420 421 422 423
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

424

425
class TestSaveLoadWithNestOut(unittest.TestCase):
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


450
class TestSaveLoadWithDictInput(unittest.TestCase):
451

452
    def test_dict_input(self):
453
        # NOTE: This net cannot be executed, it is just
454 455 456
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
457 458 459
        # net.forward.concrete_program.inputs:
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
460 461 462 463 464
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
465 466 467 468 469 470 471 472
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img')
                        }])
473 474 475 476 477 478 479 480 481 482

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


483
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
484

485 486 487 488 489
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)

        path = "test_jit_save_load_with_dict_input_no_prune/model"
        # prune inputs
490 491 492 493 494 495 496 497 498 499 500 501
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img'),
                            'img2':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img2')
                        }])
502 503 504 505 506 507 508 509 510

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)


511
class TestSaveLoadWithInputSpec(unittest.TestCase):
512

513 514 515 516 517 518 519
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
520 521
        net.forward = declarative(net.forward,
                                  input_spec=[InputSpec([None, 8], name='x')])
522

523
        model_path = "input_spec.output_spec/model"
524 525 526 527 528 529 530
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
531 532
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
533 534

        # 2. load to infer
535
        infer_layer = paddle.jit.load(model_path)
536 537 538 539 540 541 542
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

543
        model_path = "multi_inout.output_spec1/model"
544 545 546 547 548 549 550 551
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
552 553
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
554 555

        # 3. load to infer
556
        infer_layer = paddle.jit.load(model_path)
557 558 559 560 561 562 563 564
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
565 566 567
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
568
        # 2. load again
569
        infer_layer2 = paddle.jit.load(model_path)
570 571 572 573 574
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

        model_path = "multi_inout1.output_spec1/model"
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
        model_path = "multi_inout1.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, (input_x, ), output_spec=output_spec)
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
611 612


613
class TestJitSaveLoadConfig(unittest.TestCase):
614

615 616 617 618
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
619
        paddle.seed(SEED)
L
Leo Chen 已提交
620
        paddle.framework.random._manual_program_seed(SEED)
621 622 623 624 625 626 627 628 629 630 631 632 633

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

634 635
        model_path = "save_load_config.output_spec"
        output_spec = [out]
636 637 638 639
        paddle.jit.save(layer=train_layer,
                        path=model_path,
                        input_spec=[x],
                        output_spec=output_spec)
640 641

        train_layer.eval()
642
        infer_layer = paddle.jit.load(model_path)
643 644 645
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
646 647
            np.array_equal(train_layer(x)[0].numpy(),
                           infer_layer(x).numpy()))
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

670

671
class TestJitMultipleLoading(unittest.TestCase):
672

673 674
    def setUp(self):
        self.linear_size = 4
675
        self.model_path = "jit_multi_load/model"
676 677 678
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
679
        paddle.seed(SEED)
L
Leo Chen 已提交
680
        paddle.framework.random._manual_program_seed(SEED)
681 682 683 684 685 686
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
687 688 689
        paddle.jit.save(layer=layer,
                        path=self.model_path,
                        input_spec=example_inputs)
690 691 692 693 694 695 696 697 698 699 700

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


701
class TestJitPruneModelAndLoad(unittest.TestCase):
702

703 704
    def setUp(self):
        self.linear_size = 4
705
        self.model_path = "jit_prune_model_and_load/model"
706 707 708
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
709
        paddle.seed(SEED)
L
Leo Chen 已提交
710
        paddle.framework.random._manual_program_seed(SEED)
711 712 713 714 715 716 717 718 719 720 721 722 723

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

724
        output_spec = [hidden]
725 726 727 728
        paddle.jit.save(layer=train_layer,
                        path=self.model_path,
                        input_spec=[x],
                        output_spec=output_spec)
729 730 731 732 733 734 735

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

736
        infer_layer = paddle.jit.load(self.model_path)
737 738 739 740

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
741 742
            np.array_equal(train_layer(x)[0].numpy(),
                           infer_layer(x).numpy()))
743 744 745 746 747

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
748
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
749 750 751 752 753 754 755
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
756
            paddle.jit.load(self.model_path)
757 758


759
class TestJitSaveMultiCases(unittest.TestCase):
760

761 762 763 764
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
765
        paddle.seed(SEED)
766 767
        paddle.framework.random._manual_program_seed(SEED)

C
Chen Weihang 已提交
768 769 770 771 772
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
773 774 775 776
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
777
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
778
        if with_label_and_loss:
Z
Zhou Wei 已提交
779
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
780 781
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
782 783 784 785
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
786 787 788 789 790 791 792 793 794 795 796 797 798
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

799
        model_path = "test_no_prune_to_static_after_train/model"
800 801 802 803 804 805 806
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

807
        model_path = "test_no_prune_to_static_no_train/model"
808 809 810 811 812 813 814 815 816
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

817
        model_path = "test_no_prune_no_to_static_after_train/model"
818 819 820
        paddle.jit.save(
            layer,
            model_path,
821
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
822 823 824 825 826 827 828 829

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

830 831
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
832 833 834 835 836 837

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

838
        model_path = "test_no_prune_no_to_static_no_train/model"
839 840 841
        paddle.jit.save(
            layer,
            model_path,
842
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
843 844 845 846 847 848 849 850

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

851
        model_path = "test_prune_to_static_after_train/model"
852 853 854 855 856 857 858 859 860 861 862 863
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=[out])

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
864 865 866 867

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

868
        model_path = "test_prune_to_static_no_train/model"
869 870
        # TODO: no train, cannot get output_spec var here
        # now only can use index
871
        output_spec = layer.forward.outputs[:1]
872 873 874 875 876 877 878 879 880 881 882 883
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=output_spec)

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
C
Chen Weihang 已提交
884 885 886 887 888

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

        model_path = "test_prune_input_to_static_no_train/model"
889 890 891 892 893 894 895
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
896 897 898 899 900 901 902

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

        model_path = "test_prune_useless_input_to_static_no_train/model"
903 904 905 906 907 908 909
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
910 911

        self.verify_inference_correctness(layer, model_path, with_label=True)
912 913 914 915 916 917

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

918
        model_path = "test_no_prune_input_spec_name_warning/model"
919 920 921
        paddle.jit.save(
            layer,
            model_path,
922 923 924 925 926 927 928 929
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name='feed_input')
                        ])
930 931 932 933 934 935 936 937

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

938
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
939
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
940
        paddle.jit.save(layer, model_path, output_spec=[out])
941 942 943 944 945 946

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

947
        model_path = "test_prune_input_spec_name_error/model"
948 949 950 951
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
952
                input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
953
        with self.assertRaises(ValueError):
954 955 956 957 958 959 960
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name='feed_input')
                            ])
961 962 963 964 965 966

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

967
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
968
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
969
        with self.assertRaises(ValueError):
970 971 972 973 974 975 976 977
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name="image")
                            ],
                            output_spec=[out])
978 979


980
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
981

982
    def setUp(self):
983
        self.model_path = "jit_save_load_empty_layer/model"
984 985 986 987 988
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
989
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
990 991 992 993 994 995 996 997
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
998

999
    def setUp(self):
1000
        self.model_path = "jit_save_load_no_param_layer/model"
1001 1002 1003 1004 1005
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
1006 1007
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
1008 1009 1010 1011 1012 1013 1014
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


1015
class TestJitSaveLoadMultiMethods(unittest.TestCase):
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
1034 1035
                float((result -
                       getattr(load_net, func, None)(inps)).abs().max()) < 1e-5)
1036 1037 1038 1039 1040

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
1041 1042 1043
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[InputSpec(shape=[None, 784])])
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    def test_parse_name(self):
        model_path_inference = "jit_save_load_parse_name/model"
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1057

W
WeiXin 已提交
1058
class LayerSaved(paddle.nn.Layer):
1059

W
WeiXin 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
1073
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1074 1075 1076 1077 1078 1079 1080
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


class LayerLoadFinetune(paddle.nn.Layer):
1081

W
WeiXin 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
1100
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1114
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_save_without_running/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
1129 1130 1131 1132 1133 1134
        paddle.jit.save(layer_save,
                        model_path,
                        input_spec=[
                            paddle.static.InputSpec(shape=[None, IMAGE_SIZE],
                                                    dtype='float32')
                        ])
1135 1136 1137 1138 1139
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
1140 1141 1142 1143 1144 1145
            paddle.jit.save(layer_load,
                            model_path,
                            input_spec=[
                                paddle.static.InputSpec(
                                    shape=[None, IMAGE_SIZE], dtype='float32')
                            ])
1146 1147 1148 1149 1150 1151 1152 1153 1154
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1155
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
1156

W
WeiXin 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_finetune_load/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1190 1191 1192 1193
# NOTE(weixin): When there are multiple test functions in an
# `unittest.TestCase`, functions will affect each other,
# and there is a risk of random failure.
# So divided into three TestCase: TestJitSaveLoadFunctionCase1,
1194 1195
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1196

1197 1198 1199 1200
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_static_function(self):
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

        path = 'test_jit_save_load_function_1/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1216 1217

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
1218

1219 1220 1221
    def setUp(self):
        paddle.disable_static()

1222
    def test_jit_save_load_function_input_spec(self):
1223

1224
        @paddle.jit.to_static(input_spec=[
1225
            InputSpec(shape=[None, 6], dtype='float32', name='x'),
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        ])
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

        path = 'test_jit_save_load_function_2/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1239 1240

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
1241

1242 1243 1244
    def setUp(self):
        paddle.disable_static()

1245
    def test_jit_save_load_function_function(self):
1246

1247 1248 1249 1250 1251 1252 1253
        def fun(inputs):
            return paddle.tanh(inputs)

        path = 'test_jit_save_load_function_3/func'
        inps = paddle.rand([3, 6])
        origin = fun(inps)

1254 1255 1256 1257 1258 1259 1260
        paddle.jit.save(fun,
                        path,
                        input_spec=[
                            InputSpec(shape=[None, 6],
                                      dtype='float32',
                                      name='x'),
                        ])
1261 1262 1263 1264 1265 1266
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1267
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
1268

1269 1270 1271 1272
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
1273

1274
        class LinearNet(paddle.nn.Layer):
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1291 1292
        func = paddle.jit.to_static(layer.anothor_forward,
                                    [paddle.static.InputSpec(shape=[-1, 5])])
1293 1294 1295 1296 1297 1298 1299 1300 1301
        path = 'test_jit_save_load_function_with_params_case1/func'
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
1302

1303 1304 1305 1306
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
1307

1308
        class LinearNet(paddle.nn.Layer):
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

        path = 'test_jit_save_load_function_with_params_case2/func'
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

        self.assertTrue(
            np.array_equal(origin_result.numpy(), load_result.numpy()))


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
1337

1338 1339 1340 1341
    def setUp(self):
        paddle.disable_static()

    def test_jit_save_load_function(self):
1342

1343
        class LinearNet(paddle.nn.Layer):
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

        path = 'test_jit_save_load_function_with_params_case3/func'
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


1369
class TestJitSaveLoadDataParallel(unittest.TestCase):
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_inputspec/model"
1389 1390 1391
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[InputSpec(shape=[None, 784])])
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_to_static/model"
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1405 1406 1407 1408 1409 1410
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
1411 1412
        InputSpec(shape=[None, 8], dtype='float32', name='x'),
        InputSpec(shape=[None, 1], dtype='float64', name='y')
1413 1414 1415 1416 1417 1418
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='x'),
                            InputSpec(shape=[None, 1],
                                      dtype='float64',
                                      name='y')
                        ])
1450 1451 1452 1453
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

1454 1455 1456 1457 1458 1459
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[8, 8], dtype='float32'),
                            InputSpec(shape=[8, -1], dtype='float64')
                        ])
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
1471 1472 1473 1474 1475 1476
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float64'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1477 1478 1479

        with self.assertRaises(ValueError):
            # shape len mismatch
1480 1481 1482 1483 1484 1485
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8, 1], dtype='float32'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1486 1487 1488

        with self.assertRaises(ValueError):
            # shape mismatch
1489 1490 1491 1492 1493 1494
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float32'),
                                InputSpec(shape=[None, 2], dtype='float64')
                            ])
1495 1496 1497 1498
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1499
if __name__ == '__main__':
1500 1501
    with fluid.framework._test_eager_guard():
        unittest.main()