test_elementwise_div_op.py 14.5 KB
Newer Older
1
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18 19
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci

20 21 22
import paddle
from paddle import fluid
from paddle.fluid import core
G
gongweibao 已提交
23 24 25 26 27


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
28
        self.python_api = paddle.divide
29
        self.init_args()
W
Wu Yi 已提交
30
        self.init_dtype()
31 32 33 34 35 36 37
        self.init_shape()

        x = self.gen_data(self.x_shape).astype(self.val_dtype)
        y = self.gen_data(self.y_shape).astype(self.val_dtype)
        out = self.compute_output(x, y).astype(self.val_dtype)
        grad_out = np.ones(out.shape).astype(self.val_dtype)
        grad_x = self.compute_gradient_x(grad_out, y).astype(self.val_dtype)
38 39 40
        grad_y = self.compute_gradient_y(grad_out, out, y).astype(
            self.val_dtype
        )
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

        # Convert np.float32 data to np.uint16 for bfloat16 Paddle OP
        if self.dtype == np.uint16:
            x = convert_float_to_uint16(x)
            y = convert_float_to_uint16(y)
            out = convert_float_to_uint16(out)
            grad_out = convert_float_to_uint16(grad_out)
            grad_x = convert_float_to_uint16(grad_x)
            grad_y = convert_float_to_uint16(grad_y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}
        self.grad_out = grad_out
        self.grad_x = grad_x
        self.grad_y = grad_y

    def init_args(self):
        self.check_dygraph = True
        self.place = None
H
hong 已提交
60

61 62 63
    def init_dtype(self):
        self.dtype = np.float64
        self.val_dtype = np.float64
G
gongweibao 已提交
64

65 66 67
    def init_shape(self):
        self.x_shape = [13, 17]
        self.y_shape = [13, 17]
H
hong 已提交
68

69 70
    def gen_data(self, shape):
        return np.random.uniform(0.1, 1, shape)
G
gongweibao 已提交
71

72 73
    def compute_output(self, x, y):
        return x / y
G
gongweibao 已提交
74

75 76
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y
G
gongweibao 已提交
77

78 79
    def compute_gradient_y(self, grad_out, out, y):
        return -1 * grad_out * out / y
G
gongweibao 已提交
80

81 82 83 84 85 86 87 88
    def test_check_output(self):
        if self.place is None:
            self.check_output()
        else:
            self.check_output_with_place(self.place)

    def test_check_gradient(self):
        check_list = []
89 90 91 92 93 94 95 96 97 98 99 100 101
        check_list.append(
            {
                'grad': ['X', 'Y'],
                'no_grad': None,
                'val_grad': [self.grad_x, self.grad_y],
            }
        )
        check_list.append(
            {'grad': ['Y'], 'no_grad': set('X'), 'val_grad': [self.grad_y]}
        )
        check_list.append(
            {'grad': ['X'], 'no_grad': set('Y'), 'val_grad': [self.grad_x]}
        )
102 103 104 105 106 107
        for check_option in check_list:
            check_args = [check_option['grad'], 'Out']
            check_kwargs = {
                'no_grad_set': check_option['no_grad'],
                'user_defined_grads': check_option['val_grad'],
                'user_defined_grad_outputs': [self.grad_out],
108
                'check_dygraph': self.check_dygraph,
109 110 111 112 113 114
            }
            if self.place is None:
                self.check_grad(*check_args, **check_kwargs)
            else:
                check_args.insert(0, self.place)
                self.check_grad_with_place(*check_args, **check_kwargs)
W
Wu Yi 已提交
115

G
gongweibao 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class TestElementwiseDivOp_ZeroDim1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = []


class TestElementwiseDivOp_ZeroDim2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [13, 17]
        self.y_shape = []

    def compute_output(self, x, y):
        return x / y.reshape([1, 1])

    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape([1, 1])

    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape([1, 1]))


class TestElementwiseDivOp_ZeroDim3(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = [13, 17]

    def compute_output(self, x, y):
        return x.reshape([1, 1]) / y

    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y)

    def compute_gradient_y(self, grad_out, out, y):
        return -1 * grad_out * out / y


153 154 155 156 157
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
158 159 160 161 162 163 164
class TestElementwiseDivOpBF16(ElementwiseDivOp):
    def init_args(self):
        # In due to output data type inconsistence of bfloat16 paddle op, we disable the dygraph check.
        self.check_dygraph = False
        self.place = core.CUDAPlace(0)

    def init_dtype(self):
165
        self.dtype = np.uint16
166
        self.val_dtype = np.float32
167

168 169 170
    def init_shape(self):
        self.x_shape = [12, 13]
        self.y_shape = [12, 13]
171 172


173
@skip_check_grad_ci(
174 175
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
176 177 178 179
class TestElementwiseDivOpScalar(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [20, 3, 4]
        self.y_shape = [1]
180

181 182
    def compute_gradient_y(self, grad_out, out, y):
        return np.array([np.sum(-1 * grad_out * out / y)])
183 184


185 186 187 188
class TestElementwiseDivOpVector(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [100]
        self.y_shape = [100]
189

190

191 192 193 194 195
class TestElementwiseDivOpBroadcast0(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [100, 3, 4]
        self.y_shape = [100]
        self.attrs = {'axis': 0}
196

197 198
    def compute_output(self, x, y):
        return x / y.reshape(100, 1, 1)
199

200 201
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(100, 1, 1)
G
gongweibao 已提交
202

203 204
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(100, 1, 1), axis=(1, 2))
G
gongweibao 已提交
205

206

207 208 209 210 211
class TestElementwiseDivOpBroadcast1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 100, 4]
        self.y_shape = [100]
        self.attrs = {'axis': 1}
G
gongweibao 已提交
212

213 214
    def compute_output(self, x, y):
        return x / y.reshape(1, 100, 1)
G
gongweibao 已提交
215

216 217
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 100, 1)
218

219 220
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(1, 100, 1), axis=(0, 2))
G
gongweibao 已提交
221 222


223 224 225 226
class TestElementwiseDivOpBroadcast2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 100]
        self.y_shape = [100]
227

228 229
    def compute_output(self, x, y):
        return x / y.reshape(1, 1, 100)
G
gongweibao 已提交
230

231 232
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 1, 100)
G
gongweibao 已提交
233

234 235
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(1, 1, 100), axis=(0, 1))
G
gongweibao 已提交
236

237

238 239 240 241
class TestElementwiseDivOpBroadcast3(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 10, 12, 5]
        self.y_shape = [10, 12]
G
gongweibao 已提交
242 243
        self.attrs = {'axis': 1}

244 245
    def compute_output(self, x, y):
        return x / y.reshape(1, 10, 12, 1)
G
gongweibao 已提交
246

247 248
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 10, 12, 1)
249

250
    def compute_gradient_y(self, grad_out, out, y):
251 252 253
        return np.sum(
            -1 * grad_out * out / y.reshape(1, 10, 12, 1), axis=(0, 3)
        )
254 255


256 257 258 259
class TestElementwiseDivOpBroadcast4(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 50]
        self.y_shape = [2, 1, 50]
260

261 262
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(1)).reshape(2, 1, 50)
263

264

265 266 267 268
class TestElementwiseDivOpBroadcast5(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 4, 20]
        self.y_shape = [2, 3, 1, 20]
269

270 271
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(2)).reshape(2, 3, 1, 20)
272

273

274 275 276 277
class TestElementwiseDivOpCommonuse1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 100]
        self.y_shape = [1, 1, 100]
278

279 280 281 282 283 284 285 286 287 288 289
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(0, 1)).reshape(1, 1, 100)


class TestElementwiseDivOpCommonuse2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [30, 3, 1, 5]
        self.y_shape = [30, 1, 4, 1]

    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y, axis=(2)).reshape(30, 3, 1, 5)
290

291 292 293 294 295 296 297 298
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(1, 3)).reshape(30, 1, 4, 1)


class TestElementwiseDivOpXsizeLessThanYsize(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [10, 12]
        self.y_shape = [2, 3, 10, 12]
299 300
        self.attrs = {'axis': 2}

301 302
    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y, axis=(0, 1))
303 304


305 306
class TestElementwiseDivOpInt(ElementwiseDivOp):
    def init_dtype(self):
307
        self.dtype = np.int32
308
        self.val_dtype = np.int32
309

310 311
    def gen_data(self, shape):
        return np.random.randint(1, 5, size=shape)
312

313 314
    def compute_output(self, x, y):
        return x // y
315 316


317 318 319
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
W
Wu Yi 已提交
320 321 322
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16
323
        self.val_dtype = np.float16
W
Wu Yi 已提交
324 325


326 327 328
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
329 330 331 332
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None]
            )
            one = 2.0
333 334 335
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
336
            (out_result,) = exe.run(feed={'x': x}, fetch_list=[out])
337 338 339
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
340 341 342 343 344
class TestDivideOp(unittest.TestCase):
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
345

S
ShenLiang 已提交
346 347
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
348 349

    def test_dygraph(self):
S
ShenLiang 已提交
350 351 352 353 354 355 356
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
357
            z_expected = np.array([2.0, 0.6, 2.0])
S
ShenLiang 已提交
358
            self.assertEqual((np_z == z_expected).all(), True)
359 360


361 362 363
class TestComplexElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
364
        self.python_api = paddle.divide
365 366 367 368 369 370
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
371
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
372 373 374 375 376 377 378 379
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
380 381 382 383 384 385
        self.x = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
386 387 388
        self.out = self.x / self.y

    def init_grad_input_output(self):
389 390 391
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
392 393 394 395
        self.grad_x = self.grad_out / np.conj(self.y)
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)

    def test_check_output(self):
H
hong 已提交
396
        self.check_output(check_eager=False)
397 398

    def test_check_grad_normal(self):
399 400 401 402 403 404
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
405 406

    def test_check_grad_ingore_x(self):
407 408 409 410 411 412 413
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
414 415

    def test_check_grad_ingore_y(self):
416 417 418 419 420 421 422
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
423 424


C
chentianyu03 已提交
425 426 427
class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
428 429 430
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chentianyu03 已提交
431 432 433
        self.out = self.x / self.y

    def init_grad_input_output(self):
434 435 436
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
C
chentianyu03 已提交
437 438 439 440
        self.grad_x = np.real(self.grad_out / np.conj(self.y))
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)


441
class TestElementwiseDivop(unittest.TestCase):
442
    def test_dygraph_div(self):
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)
        np_a[np.abs(np_a) < 0.0005] = 0.002
        np_b[np.abs(np_b) < 0.0005] = 0.002

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray / tenor
        expect_out = np_a / np_b
        actual_out = np_a / tensor_b
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: tensor / nparray
        actual_out = tensor_a / np_b
        np.testing.assert_allclose(actual_out, expect_out)

        paddle.enable_static()


G
gongweibao 已提交
465
if __name__ == '__main__':
466
    paddle.enable_static()
G
gongweibao 已提交
467
    unittest.main()