config_parser.py 153.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
106
print = logger.info
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

111

112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
129
        g_parameter_initializer_map={},
130
        g_extended_config_funcs={},
131 132

        # store command args of paddle_trainer
133
        g_command_config_args={},
134 135

        # Used for PyDataProvider to avoid duplicate module name
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

158

159 160
g_config_funcs = {}

161

162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

167

168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

173

174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
180

181 182
    return wrap

183

184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

187

188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

191

192 193 194
def default(x, default_value):
    return default_value if x is None else x

195

196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

202

203 204
# functions available in config file

205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

263

264
@config_func
265
def SubModelEnd(name=None):
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
269
    if name is not None:
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
273 274 275

    g_current_submodel = g_submodel_stack.pop()

276

277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
281 282
    return name + suffix

283

284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
289 290
    global g_current_submodel
    global g_add_submodel_suffix
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

348

349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
391
    for pair in g_current_submodel.memories:  #check exist
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

411

412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

418

419 420
@config_class
class Bias(Cfg):
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
437 438
        self.add_keys(locals())

439

440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
447
            initializer=None,
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
461
            bilinear_interp=None,
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
484

485

486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
489 490
    type = None  # subclass should set it correctly

491 492 493
    def __init__(
            self,
            input_layer_name,
494
            size=0,  # projection output size
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
504
            initializer=None,
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
515
            input_layer_argument=None, ):
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
529

530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
532

533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
543

544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
546

547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

550

551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
560 561
        self.proj_conf.offset = offset

562 563 564
    def calc_output_size(self, input_layer_config):
        return 0  # depends on the outside MixedLayer

565 566
    def calc_parameter_size(self, input_size, output_size):
        return 0
567

568 569 570
    def calc_parameter_dims(self, input_size, output_size):
        return []

571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


601 602 603 604 605 606 607
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
608

609 610
    def calc_parameter_size(self, input_size, output_size):
        return output_size
611

612 613 614
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

615

X
xuwei06 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

630

631 632 633 634 635 636
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
637

638 639 640
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

641

642 643 644 645 646 647
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
648

649 650 651
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

652

653 654 655 656 657 658
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
659

660 661 662
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

663

664 665 666 667
@config_class
class ContextProjection(Projection):
    type = 'context'

668 669
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


693
@config_class
694
class ConvBaseProjection(Projection):
695 696 697 698 699
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
700
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
701 702 703 704 705 706 707 708 709 710 711 712

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
713 714
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
715 716 717 718 719 720 721

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

722

723 724 725 726 727 728 729 730 731
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
732 733
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
734

735
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
751 752
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
753 754 755

        parse_conv(
            conv_conf,
756
            self.input_layer_name,
757 758 759 760 761 762 763 764
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


765 766 767
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
768 769
    type = None  # subclass should set it correctly

770 771
    def __init__(
            self,
772
            input_layer_names, ):
773 774 775 776 777 778 779 780 781 782
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

783

784 785 786
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
787 788 789

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
808 809 810 811 812 813 814

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
815 816 817
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

818 819
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
820
                   self.operator_conf.conv_conf, num_filters)
821 822 823
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
824 825 826

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

827 828
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
829 830


831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


861 862 863
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
864 865 866 867 868 869 870 871 872 873 874 875
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
876 877 878
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
879 880
        self.add_keys(locals())
        if filter_size_y is None:
881
            self.filter_size_y = filter_size
882
        if padding_y is None:
883
            self.padding_y = padding
884 885
        if dilation_y is None:
            self.dilation_y = dilation
886
        if stride_y is None:
887
            self.stride_y = stride
888
        if output_x is not None:
889 890
            config_assert(output_x <= 0)

891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
912 913 914 915 916 917
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
918 919 920 921
        if output_x is not None:
            config_assert(output_x <= 0)


922 923
@config_class
class BilinearInterp(Cfg):
924
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
925 926
        self.add_keys(locals())

927

928 929
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
930 931 932 933 934 935 936 937 938 939 940
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
941
        self.add_keys(locals())
942 943


944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
969
@config_class
Q
qijun 已提交
970
class SpatialPyramidPool(Cfg):
971
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
972
        self.add_keys(locals())
973

974

D
dangqingqing 已提交
975 976 977 978 979 980
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


981 982
@config_class
class Norm(Cfg):
983 984 985 986 987 988 989 990 991
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
992 993
        self.add_keys(locals())

994

995 996
@config_class
class Image(Cfg):
997
    def __init__(self, channels, img_size=None):
998 999
        self.add_keys(locals())

1000

1001 1002
@config_class
class BlockExpand(Cfg):
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
1015 1016
        self.add_keys(locals())

1017

1018 1019
@config_class
class MaxOut(Cfg):
1020
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1021 1022
        self.add_keys(locals())

1023

1024
def create_data_config_proto(async_load_data=False,
1025
                             constant_slots=None,
王益 已提交
1026 1027 1028
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
1029 1030 1031 1032 1033 1034 1035 1036
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
1037 1038
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
1039

1040
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
1041 1042 1043 1044 1045 1046
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

1047

1048
@config_func
1049 1050 1051 1052 1053
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1054
    data_config = create_data_config_proto(**xargs)
1055 1056 1057 1058 1059 1060 1061 1062 1063
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

1064

1065
@config_func
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1076
    data_config = create_data_config_proto(**xargs)
1077 1078
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
1079

1080 1081 1082
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
1083

1084 1085 1086
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
1087 1088
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
1089
        g_py_module_name_list.append(module_new_name)
1090 1091 1092 1093
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1118

1119
@config_func
1120 1121 1122 1123 1124 1125 1126
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1127
    data_config = create_data_config_proto(**xargs)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1147

1148 1149
#real data for training is actually provided by "sub_data" data providers.
@config_func
1150
def MultiData(sub_data=[]):
1151 1152 1153 1154 1155
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

1156

1157
@config_func
1158 1159 1160 1161 1162 1163 1164
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
1165

1166
    data_config = create_data_config_proto(**xargs)
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

1200

1201 1202
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1203 1204 1205 1206 1207 1208 1209
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

1210

1211
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
1212
#It is the reverse function of cnn_output_size
1213
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
1214 1215 1216
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1217 1218
    return img_size

1219

1220
def get_img_size(input_layer_name, channels):
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


1247 1248 1249 1250 1251 1252
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1253
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
1254
    pool_conf.pool_type = pool.pool_type
1255 1256 1257
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
1258
                  "['max-projection', 'avg-projection', "
1259
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
1260 1261 1262 1263 1264 1265

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
1266
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
1267

1268
    pool_conf.img_size, pool_conf.img_size_y = \
1269
        get_img_size(input_layer_name, pool.channels)
1270

1271
    config_assert(not pool.start, "start is deprecated in pooling.")
1272

1273
    if pool.padding is not None:
1274
        pool_conf.padding = pool.padding
1275
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1276 1277
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1278
                                         not ceil_mode)
D
dangqingqing 已提交
1279 1280
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1281
                                         pool_conf.stride_y, not ceil_mode)
1282

1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1323
def parse_spp(spp, input_layer_name, spp_conf):
1324
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1325 1326
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
1327 1328
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1329
    spp_conf.pyramid_height = spp.pyramid_height
1330

Q
qijun 已提交
1331

1332 1333
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
1334
    image_conf.img_size, image_conf.img_size_y = \
1335
        get_img_size(input_layer_name, image_conf.channels)
1336

1337

C
chengduoZH 已提交
1338 1339 1340 1341 1342 1343
def parse_image3d(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
        get_img3d_size(input_layer_name, image_conf.channels)


1344 1345
def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1346 1347 1348 1349 1350
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
1351 1352 1353 1354 1355 1356
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

1357
    norm_conf.img_size, norm_conf.img_size_y = \
1358
        get_img_size(input_layer_name, norm.channels)
1359
    norm_conf.output_x = norm_conf.img_size
1360
    norm_conf.output_y = norm_conf.img_size_y
1361 1362 1363
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
1364 1365
        norm_conf.scale /= norm.size**2

1366

1367 1368
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1369
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
1370 1371 1372 1373 1374 1375 1376 1377 1378
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
1379

1380
    if not trans:
1381
        conv_conf.filter_channels = conv.channels / conv.groups
1382
        conv_conf.img_size, conv_conf.img_size_y = \
1383
            get_img_size(input_layer_name, conv.channels)
1384
        conv_conf.output_x = cnn_output_size(
1385 1386
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1387 1388 1389
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1390
    else:
1391
        conv_conf.filter_channels = num_filters / conv.groups
1392
        conv_conf.output_x, conv_conf.output_y = \
1393
            get_img_size(input_layer_name, conv.channels)
1394
        conv_conf.img_size = cnn_image_size(
1395 1396
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1397
        conv_conf.img_size_y = cnn_image_size(
1398 1399
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1400

1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1459
        block_expand_conf.output_x = cnn_output_size(
1460
            block_expand.img_size_x, block_expand.block_x,
1461
            block_expand.padding_x, block_expand.stride_x, False)
1462 1463

    if block_expand_conf.img_size_y == 0:
1464
        block_expand_conf.output_y = 0
1465
    else:
1466
        block_expand_conf.output_y = cnn_output_size(
1467
            block_expand.img_size_y, block_expand.block_y,
1468
            block_expand.padding_y, block_expand.stride_y, False)
1469

1470

1471
def parse_maxout(maxout, input_layer_name, maxout_conf):
1472
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1473
    maxout_conf.groups = maxout.groups
1474

1475

1476 1477
# Define an evaluator
@config_func
Y
yangyaming 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
1520 1521
    if top_k is not None:
        evaluator.top_k = top_k
1522 1523
    if delimited is not None:
        evaluator.delimited = delimited
1524

1525 1526 1527
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

1540

1541 1542 1543 1544 1545
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
1546
            size,  # size can be 0. In this case, subclass should set it.
1547 1548 1549 1550
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1551 1552
            coeff=None,
            error_clipping_threshold=None):
1553
        config_assert('@' not in name,
1554
                      "layer name: %s contain special character @" % name)
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1570
        assert isinstance(self.config, LayerConfig)
1571
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
T
tensor-tang 已提交
1572
        mkldnn_acts = ['relu', 'tanh', 'softmax']
1573 1574
        if use_mkldnn and active_type in mkldnn_acts:
            active_type = "mkldnn_" + active_type
1575 1576 1577
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1578 1579
        if coeff is not None:
            self.config.coeff = float(coeff)
1580 1581 1582 1583 1584 1585 1586
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1587
        elif g_default_device is not None:
1588 1589
            self.config.device = g_default_device

C
caoying03 已提交
1590 1591 1592
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

1593 1594 1595 1596 1597 1598 1599
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
1600 1601
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
1602 1603 1604 1605 1606 1607 1608 1609
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
1610
                self.operators.append(input)
1611 1612 1613 1614
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
1615
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
1616
            config_assert(input_layer_name in g_layer_map,
1617 1618
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
1636
            bias,  # True/False or BiasCfg
1637
            size,
1638 1639 1640
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
1641 1642 1643 1644 1645 1646

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

1647 1648 1649
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
1650 1651 1652 1653 1654 1655 1656 1657 1658

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1659 1660
                assert isinstance(self.config, LayerConfig)

1661 1662 1663
                Parameter(
                    bias.parameter_name,
                    size,
1664 1665
                    self.config.device
                    if self.config.HasField('device') else None,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
1677 1678
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
1679
                    is_static=bias.is_static,
1680 1681
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
1682 1683 1684 1685 1686
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

1687 1688 1689 1690 1691 1692
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
1707 1708
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
1709 1710
                          % (input_config.parameter_name, para.size, size))

1711 1712
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
1713 1714 1715 1716 1717 1718
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1719
            self.config.device if self.config.HasField("device") else None,
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
1732 1733
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
1734 1735 1736 1737
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
1738 1739
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
1740 1741 1742 1743 1744 1745 1746 1747 1748

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

1749 1750 1751 1752
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

1753 1754 1755
    def set_layer_depth(self, depth):
        self.config.depth = depth

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

1769

1770 1771
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
1772 1773 1774
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
1775 1776
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

1777

C
caoying03 已提交
1778 1779 1780
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1781
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1782 1783 1784 1785
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1786 1787 1788 1789 1790
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1791 1792


1793 1794
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1795 1796
    layer_type = 'fc'

L
lianxiaochen 已提交
1797 1798 1799 1800 1801 1802 1803
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1804
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1805 1806
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1807 1808 1809 1810 1811 1812 1813
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
1814 1815 1816 1817 1818 1819
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1820 1821 1822
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
1823 1824
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
1825 1826
            if sparse:
                psize = self.inputs[input_index].nnz
1827 1828
            else:
                sparse = None
1829

1830 1831
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1832
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1833 1834
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
1835

1836

T
tensor-tang 已提交
1837 1838 1839 1840 1841
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


1842 1843
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
1874 1875
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

1888 1889
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1890 1891
        self.create_bias_parameter(bias, self.config.size)

1892

1893 1894
@config_layer('print')
class PrintLayer(LayerBase):
1895
    def __init__(self, name, inputs, format=None):
1896
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1897 1898 1899 1900 1901 1902
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1903

1904

Y
yuan 已提交
1905 1906
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1907 1908
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1909
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
1910
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1911 1912 1913 1914 1915 1916 1917
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
1918
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1919 1920 1921 1922 1923 1924
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

1925

1926 1927 1928
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1929
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1951
                 background_id, **xargs):
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


1972 1973
@config_layer('data')
class DataLayer(LayerBase):
1974 1975 1976 1977 1978 1979 1980
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
1981 1982
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
1983 1984
        if height and width:
            self.set_layer_height_width(height, width)
1985 1986
        if depth:
            self.set_layer_depth(depth)
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
2015 2016


2017 2018
@config_layer('data_norm')
class DataNormLayer(LayerBase):
2019
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

2031

2032 2033 2034
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
2035 2036

    def __init__(self, name, inputs, partial_sum=1, **args):
2037 2038 2039
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
2040 2041 2042
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
2043
        self.set_layer_size(input_layer.size)
C
caoying03 已提交
2044
        self.config.partial_sum = partial_sum
2045 2046
        self.create_input_parameter(0, input_layer.size / partial_sum)

2047

2048 2049 2050
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
2051 2052 2053 2054 2055 2056 2057 2058

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2059 2060 2061 2062 2063 2064
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

2065
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
2066 2067 2068
        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2069 2070
        # Automatically select cudnn_type for GPU, exconv for CPU
        # and mkldnn_conv for MKLDNN
2071
        # if set type=conv, but still reserve the way user specify
2072
        # exconv, mkldnn_conv or cudnn_conv manually.
2073 2074 2075
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

2076 2077 2078
        if self.layer_type == "mkldnn_conv":
            config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")

2079
        if (use_gpu == 1 and self.layer_type != "exconv" and
2080
                self.layer_type != "mkldnn_conv" and
2081
            (parallel_nn == 0 or self.config.device > -1)):
2082 2083
            self.layer_type = "cudnn_conv"
        else:
2084
            self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
2085 2086 2087 2088 2089 2090 2091 2092 2093
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
2094 2095
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
2096 2097
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2098 2099
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
2100 2101 2102 2103 2104 2105 2106 2107

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2108
               * (conv_conf.filter_size * conv_conf.filter_size_y)
2109

2110

2111 2112 2113 2114
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

2115

2116 2117 2118 2119 2120
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'mkldnn_conv'


2121 2122 2123 2124
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2125 2126 2127 2128

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
2129 2130 2131 2132 2133 2134 2135 2136

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2137
        super(ConvTransLayerBase, self).__init__(
2138 2139 2140 2141 2142 2143 2144 2145
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2157 2158 2159 2160 2161 2162 2163 2164
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2165
            parse_conv(
2166 2167
                self.inputs[input_index].conv,
                input_layer.name,
2168
                self.config.inputs[input_index].conv_conf,
2169
                num_filters,
2170
                trans=True)
2171 2172 2173
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2174 2175
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2176 2177 2178 2179 2180 2181 2182

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2183
        return conv_conf.channels * conv_conf.filter_channels \
2184 2185
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

2186

2187 2188 2189 2190
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

2191

2192 2193 2194 2195 2196
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2197 2198
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2199 2200 2201 2202 2203
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2204
                 shared_biases=True,
2205
                 **xargs):
C
chengduoZH 已提交
2206
        super(Conv3DLayerBase, self).__init__(
2207 2208 2209 2210 2211 2212 2213 2214
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2215 2216 2217 2218
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2230
                trans=trans
2231 2232 2233
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2234 2235 2236 2237 2238 2239 2240
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2261 2262
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2263 2264 2265 2266 2267
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2268 2269 2270
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2271

2272

C
chengduoZH 已提交
2273 2274 2275
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2276 2277


2278 2279
@config_layer('norm')
class NormLayer(LayerBase):
2280 2281
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
2282 2283 2284
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
2285 2286 2287 2288
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2289 2290 2291
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
2292

2293 2294 2295

@config_layer('pool')
class PoolLayer(LayerBase):
2296 2297
    layer_type = 'pool'

2298
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
2299 2300 2301 2302 2303 2304
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
        if self.layer_type == "mkldnn_pool":
            config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
        self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
        super(PoolLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)
2305 2306 2307
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
2308
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2309
                       pool_conf, ceil_mode)
2310 2311
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
2312

2313

2314 2315 2316 2317 2318
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
    layer_type = 'mkldnn_pool'


2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2348 2349
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2350
    def __init__(self, name, inputs, **xargs):
2351
        super(SpatialPyramidPoolLayer, self).__init__(
2352
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2353 2354 2355
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
2356 2357 2358
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2359

2360

D
dangqingqing 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2380 2381
@config_layer('crop')
class CropLayer(LayerBase):
2382
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2383
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2384 2385 2386
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


2397 2398 2399
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
2400 2401 2402 2403 2404

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
C
chengduoZH 已提交
2405
                 img3D=False,
2406 2407 2408
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
C
chengduoZH 已提交
2409
                 mean_var_names=None,
2410
                 **xargs):
2411 2412 2413 2414
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
2415 2416
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
2417 2418 2419 2420 2421 2422 2423 2424
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
2425 2426 2427 2428 2429 2430
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2431
                    is_shared=is_shared,
D
dangqingqing 已提交
2432
                    make_layer_name_in_submodel=False, ))
2433 2434 2435 2436 2437 2438

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2439
                ((not parallel_nn) or self.config.device > -1)
2440
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
2441
        super(BatchNormLayer, self).__init__(
2442
            name, self.layer_type, 0, inputs=inputs, **xargs)
2443 2444 2445 2446 2447 2448

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

2449
        input_layer = self.get_input_layer(0)
2450
        image_conf = self.config.inputs[0].image_conf
C
chengduoZH 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
        if img3D:
            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    depth=image_conf.img_size_z,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2465
        else:
C
chengduoZH 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
            parse_image(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2478 2479 2480

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
C
chengduoZH 已提交
2481 2482 2483 2484
        if mean_var_names is not None:
            assert len(mean_var_names) == 2
            self.inputs[1].parameter_name = mean_var_names[0]
            self.inputs[2].parameter_name = mean_var_names[1]
2485

2486 2487 2488 2489 2490 2491
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

C
chengduoZH 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    def set_cnn_layer(self,
                      input_layer_name,
                      depth=None,
                      height=None,
                      width=None,
                      channels=None,
                      is_print=True):
        depthIsNone = False
        if depth is None:
            depth = 1
            depthIsNone = True
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print and depthIsNone:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))
        elif is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))

2514 2515 2516
    def calc_parameter_size(self, image_conf):
        return image_conf.channels

2517

2518 2519
@config_layer('trans')
class TransLayer(LayerBase):
2520
    def __init__(self, name, inputs, **xargs):
2521
        super(TransLayer, self).__init__(
2522
            name, 'trans', 0, inputs=inputs, **xargs)
2523 2524 2525
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
2526 2527
        self.set_layer_size(self.get_input_layer(0).size)

2528

2529 2530
@config_layer('resize')
class ResizeLayer(LayerBase):
2531
    def __init__(self, name, size, inputs, **xargs):
2532
        super(ResizeLayer, self).__init__(
2533
            name, 'resize', size=size, inputs=inputs, **xargs)
2534 2535 2536 2537
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

2538

2539 2540
@config_layer('rotate')
class RotateLayer(LayerBase):
2541
    def __init__(self, name, inputs, height, width, device=None):
2542 2543 2544 2545 2546
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
2547
        self.set_layer_height_width(height, width)
2548 2549 2550
        self.set_layer_size(self.get_input_layer(0).size)


2551 2552
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2553
    def __init__(self, name, inputs, **xargs):
2554
        super(BlockExpandLayer, self).__init__(
2555
            name, 'blockexpand', 0, inputs=inputs, **xargs)
2556 2557
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2558 2559
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
2560
                self.config.inputs[input_index].block_expand_conf)
2561 2562 2563 2564 2565 2566
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

2567

2568 2569
@config_layer('maxout')
class MaxOutLayer(LayerBase):
2570 2571 2572
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2573 2574
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
2575
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
2576
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2577 2578
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
2579

2580

D
dangqingqing 已提交
2581 2582 2583 2584
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2585
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2586 2587
        config_assert(
            len(self.inputs) == 1,
2588
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2598 2599
@config_layer('clip')
class ClipLayer(LayerBase):
2600 2601
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2602 2603
        config_assert(
            len(self.inputs) == 1,
2604 2605
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2606 2607
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2608 2609
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2610 2611


G
guosheng 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


2626 2627 2628 2629
# key: cost type
# value: cost class
g_cost_map = {}

2630

2631 2632 2633
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
2634 2635
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
2636

2637
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
2638 2639 2640
    global g_cost_map
    g_cost_map[cost_type] = cls

2641

2642
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2643
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
2644 2645 2646 2647 2648 2649
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2650
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2651
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2652
define_cost('SmoothL1Cost', 'smooth_l1')
2653

2654

2655 2656
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
2657
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
2658 2659
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
2660 2661 2662
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
2663 2664 2665 2666 2667 2668 2669 2670
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
2696 2697


2698 2699
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
2700
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
2701 2702
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
2703
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
2704 2705
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
2706 2707 2708
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
2709 2710
        self.config.max_sort_size = max_sort_size

2711

L
Luo Tao 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


2723 2724
@config_layer('nce')
class NCELayer(LayerBase):
2725 2726 2727 2728 2729 2730 2731 2732
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
2733
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
2734 2735
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
2736 2737
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
2738 2739 2740 2741
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
2742
            s = sum(neg_sampling_dist)
2743 2744 2745
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
2746 2747 2748 2749 2750

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
2751
        input_layer = self.get_input_layer(num_real_inputs)
2752 2753 2754 2755
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

2756 2757
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
2771
    def __init__(self, name, inputs, bias=True, **xargs):
2772 2773
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
2774
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2775 2776

        if len(self.inputs) > 1:
2777 2778 2779 2780 2781 2782 2783
            for input_index in xrange(len(self.inputs)):
                assert self.get_input_layer(0).height == self.get_input_layer(
                    input_index).height
                assert self.get_input_layer(0).width == self.get_input_layer(
                    input_index).width
                assert self.get_input_layer(0).depth == self.get_input_layer(
                    input_index).depth
2784 2785 2786 2787 2788

        self.set_layer_size(self.get_input_layer(0).size)
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                        self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
2789 2790
        self.create_bias_parameter(bias, self.config.size)

2791

2792 2793
@config_layer('agent')
class AgentLayer(LayerBase):
2794 2795 2796 2797
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

2798 2799 2800

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
2801
    def __init__(self, name, size, device=None):
2802 2803 2804
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

2805

2806 2807
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2808
    def __init__(self, name, size, width=None, height=None, device=None):
2809 2810
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2811 2812
        if height and width:
            self.set_layer_height_width(height, width)
2813

2814

2815 2816
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
2817 2818 2819 2820 2821
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
2822
        for i in range(1, len(inputs)):
2823 2824 2825 2826 2827
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

2828 2829

@config_func
2830 2831 2832 2833
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
2834 2835 2836 2837
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

2838

2839 2840
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2841 2842 2843 2844
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2868
    agent_layer = AgentLayer(agent_name, size)
2869
    config_assert(g_current_submodel.is_recurrent_layer_group,
2870
                  'Memory should be used in recurrent layer group only')
2871
    memory = g_current_submodel.memories.add()
2872 2873
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
2874
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
2875
    options = sum((boot_layer is not None, bool(boot_bias),
2876
                   boot_with_const_id is not None))
2877 2878 2879 2880
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
2881 2882 2883
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
2884 2885
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
2886 2887 2888
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
2889
            boot_bias, size, for_self=False)
2890 2891 2892 2893 2894
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
2918 2919 2920 2921
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
2922 2923 2924 2925 2926 2927 2928 2929 2930
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

2931

2932 2933
@config_layer('expand')
class ExpandLayer(LayerBase):
2934
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
2935
        super(ExpandLayer, self).__init__(
2936
            name, 'expand', 0, inputs=inputs, **xargs)
2937 2938 2939 2940 2941 2942 2943 2944
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

2945 2946 2947

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
2948 2949 2950 2951 2952
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
2953 2954
                 bias=False,
                 **xargs):
2955
        super(FeatMapExpandLayer, self).__init__(
2956
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
2957 2958 2959
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
2960
            self.config.num_filters = num_filters
2961
        else:
2962
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
2963 2964
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
2965
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
2966 2967 2968 2969


@config_layer('max')
class MaxLayer(LayerBase):
2970 2971 2972 2973 2974
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2975
                 output_max_index=None,
2976
                 stride=-1,
2977
                 **xargs):
2978
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
2979
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2980 2981
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
2982
        self.config.trans_type = trans_type
2983
        self.config.seq_pool_stride = stride
2984 2985 2986 2987
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2988 2989
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
2990 2991 2992 2993


@config_layer('maxid')
class MaxIdLayer(LayerBase):
2994
    def __init__(self, name, inputs, beam_size=None, device=None):
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
3012
    def __init__(self, name, inputs, eos_id, device=None):
3013 3014 3015
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
3016
        self.set_layer_size(2)  # boolean output
3017 3018
        self.config.eos_id = eos_id

3019

3020 3021
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
3022 3023 3024 3025
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
3026
                 bias=False,
3027
                 stride=-1,
3028
                 **xargs):
3029
        super(SequenceLastInstanceLayer, self).__init__(
3030
            name, 'seqlastins', 0, inputs=inputs, **xargs)
3031 3032
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
3033
        if trans_type == 'seq':
3034
            config_assert(stride == -1, 'subseq does not support stride window')
3035
        self.config.trans_type = trans_type
3036 3037
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
3038 3039
        self.create_bias_parameter(bias, self.config.size)

3040

3041 3042
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
3043 3044 3045 3046 3047
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3048
                 stride=-1,
3049
                 **xargs):
3050
        super(SequenceFirstInstanceLayer, self).__init__(
3051 3052 3053 3054 3055 3056
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
3057 3058
        self.config.select_first = True

3059

3060 3061
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
3062
    def __init__(self, name, inputs, bias=False, **xargs):
3063
        super(SequenceConcatLayer, self).__init__(
3064
            name, 'seqconcat', 0, inputs=inputs, **xargs)
3065 3066
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
3067 3068 3069 3070 3071
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

3072

3073 3074
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
3075
    def __init__(self, name, size, inputs, bias=False, **xargs):
3076
        super(SequenceReshapeLayer, self).__init__(
3077
            name, 'seqreshape', size, inputs=inputs, **xargs)
3078 3079
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
3080 3081 3082
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

3083

3084 3085
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
3086
    def __init__(self, name, inputs, bias=False, **xargs):
3087
        super(SubSequenceLayer, self).__init__(
3088
            name, 'subseq', 0, inputs=inputs, **xargs)
3089 3090 3091 3092 3093 3094
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3136
            self.config.select_first = (starts is not None)
3137 3138


C
caoying03 已提交
3139 3140
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3153
        super(SubNestedSequenceLayer, self).__init__(
3154 3155 3156 3157 3158
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3159 3160 3161 3162 3163
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


3164 3165
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
3166 3167 3168
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
3169 3170 3171 3172 3173
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

3174

3175 3176
@config_layer('power')
class PowerLayer(LayerBase):
3177 3178 3179
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
3180 3181 3182 3183
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
3184 3185 3186
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

3187 3188 3189

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
3190 3191 3192
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
3193 3194 3195 3196 3197 3198
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3199

3200 3201
@config_layer('scaling')
class ScalingLayer(LayerBase):
3202 3203 3204
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
3205 3206 3207 3208
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
3209 3210 3211
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

3212 3213 3214

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
3215 3216 3217
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
3218 3219 3220 3221
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3222

3223 3224
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
3225
    def __init__(self, name, size, inputs, device=None):
3226
        super(ConvexCombinationLayer, self).__init__(
3227 3228 3229
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3230 3231 3232
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
3233 3234
        self.set_layer_size(size)

3235

3236 3237
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
3238
    def __init__(self, name, inputs, device=None):
3239 3240
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
3241 3242
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
3243 3244 3245 3246 3247 3248 3249 3250
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

3251

3252 3253
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
3254
    def __init__(self, name, inputs, **xargs):
3255
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3256
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
3257
        input_layer = self.get_input_layer(0)
3258 3259 3260 3261
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
3262

L
liaogang 已提交
3263

3264 3265
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
3266
    def __init__(self, name, inputs, device=None):
3267
        super(SumToOneNormLayer, self).__init__(
3268 3269 3270
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
3271 3272 3273
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3274

G
guosheng 已提交
3275 3276
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3277
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3278
        super(RowL2NormLayer, self).__init__(
3279
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3280
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3281 3282
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3283 3284


3285 3286
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
3287
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
3288
        super(CosSimVecMatLayer, self).__init__(
3289
            name, 'cos_vm', size, inputs=inputs, device=device)
3290
        self.config.cos_scale = cos_scale
3291 3292
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3293 3294 3295
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
3296

3297

3298 3299
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
3300
    def __init__(self, name, inputs, device=None):
3301 3302
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
3303 3304
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
3317 3318 3319 3320 3321
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3322
                 bias=False,
3323
                 stride=-1,
3324
                 **xargs):
3325
        super(AverageLayer, self).__init__(
3326
            name, 'average', 0, inputs=inputs, **xargs)
3327
        self.config.average_strategy = average_strategy
3328 3329
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
3330
        self.config.trans_type = trans_type
3331
        self.config.seq_pool_stride = stride
3332 3333 3334 3335 3336 3337
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

3338

3339 3340
@config_layer('cos')
class CosSimLayer(LayerBase):
3341
    def __init__(self, name, inputs, cos_scale=1, device=None):
3342 3343 3344 3345 3346 3347
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
3348
        self.config.cos_scale = cos_scale
3349 3350 3351 3352


@config_layer('tensor')
class TensorLayer(LayerBase):
3353
    def __init__(self, name, size, inputs, bias=True, **xargs):
3354
        super(TensorLayer, self).__init__(
3355
            name, 'tensor', size, inputs=inputs, **xargs)
3356 3357
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
3358 3359
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3370
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3388
            if self.config.size == 0:
3389 3390 3391
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3392
            else:
3393 3394
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
3395 3396 3397 3398
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
3399 3400 3401 3402
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
3403 3404 3405
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3406
            if self.config.size == 0 and isinstance(input, Projection):
3407 3408 3409
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3410
            elif isinstance(input, Projection):
3411 3412 3413 3414 3415 3416
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
3428 3429
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3441 3442 3443 3444 3445 3446
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
3447

3448 3449 3450
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3451

3452

3453 3454
# like MixedLayer, but no bias parameter
@config_func
3455
def ExpressionLayer(name, inputs, **xargs):
3456 3457
    MixedLayer(name, inputs, bias=False, **xargs)

3458

3459 3460
@config_layer('concat')
class ConcatenateLayer(LayerBase):
3461
    def __init__(self, name, inputs, bias=False, **xargs):
3462
        config_assert(inputs, 'inputs cannot be empty')
3463
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
3464 3465 3466 3467
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
3468 3469 3470 3471 3472 3473
            assert self.get_input_layer(0).height == self.get_input_layer(
                input_index).height
            assert self.get_input_layer(0).width == self.get_input_layer(
                input_index).width
            assert self.get_input_layer(0).depth == self.get_input_layer(
                input_index).depth
3474 3475
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
3476
            if self.config.size == 0:
3477 3478
                size += input_layer.size

3479 3480 3481
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                    self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
3482 3483
        self.set_layer_size(size)

3484

3485 3486 3487
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
3488
    def __init__(self, name, inputs, bias=False, **xargs):
3489 3490 3491
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3492 3493

        if isinstance(self.inputs[0], ConvProjection):
3494 3495 3496 3497 3498 3499
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
3521
                                              input.proj_conf.output_size)
3522
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
3523
                                             input.proj_conf.output_size)
3524 3525
            self.create_input_parameter(input_index, psize, dims)

3526 3527 3528 3529 3530 3531 3532
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3533 3534 3535
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3536

3537

3538 3539
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
3540
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3541 3542
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
3543 3544 3545 3546 3547 3548 3549 3550 3551
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

3552

3553 3554
@config_layer('lstmemory')
class LstmLayer(LayerBase):
3555 3556 3557 3558 3559 3560 3561 3562
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
3563 3564 3565 3566 3567 3568 3569 3570
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
3571
        self.config.active_gate_type = active_gate_type
3572 3573 3574 3575 3576
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

3577

3578 3579
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
3590 3591 3592
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3593 3594 3595 3596 3597
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3598 3599 3600
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

3601

3602 3603 3604
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
3605 3606 3607 3608
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
3609 3610 3611 3612
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

3613

3614 3615
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
3616 3617 3618 3619 3620 3621 3622 3623
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3624 3625
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
3626 3627 3628 3629
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3630 3631
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
3632
        size = input_layer.size / (3 + dim_num)
3633
        self.set_layer_size(size)
3634
        self.config.active_gate_type = active_gate_type
3635 3636 3637
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3638 3639
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
3640
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
3641 3642
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

3643 3644 3645

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
3657 3658 3659 3660 3661 3662
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
3663
        self.config.active_gate_type = active_gate_type
3664 3665 3666
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

3667

3668 3669
@config_layer('gru_step')
class GruStepLayer(LayerBase):
3670 3671 3672 3673 3674 3675 3676
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3677 3678
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
3679 3680 3681
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3682 3683 3684 3685 3686
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3687
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
3688 3689
        self.create_bias_parameter(bias, size * 3)

3690

3691 3692 3693 3694 3695 3696 3697
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
3698 3699


3700 3701
@config_layer('crf')
class CRFLayer(LayerBase):
3702
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
3703
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
3704 3705
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3706
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3707 3708
        self.config.coeff = coeff

3709

3710 3711 3712 3713 3714 3715 3716 3717
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
3718 3719


3720 3721
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
3722
    def __init__(self, name, size, inputs, device=None):
3723 3724 3725 3726 3727
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3728
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3729

3730

3731 3732
@config_layer('ctc')
class CTCLayer(LayerBase):
3733
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
3734 3735 3736 3737
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


3770 3771
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
3772
    def __init__(self, name, device=None):
3773 3774 3775 3776
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3777 3778 3779 3780 3781
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
3782 3783
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3784 3785


3786 3787
# Deprecated, use a new layer specific class instead
@config_func
3788
def Layer(name, type, **xargs):
3789 3790 3791 3792
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
3793
    config_assert(layer_func, "layer type '%s' not supported." % type)
3794
    return layer_func(name, **xargs)
3795

3796

3797
@config_func
3798
def ParameterHook(type, **kwargs):
3799
    if type == 'pruning':
3800 3801
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3802
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3803 3804
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
3805
        return hook
3806 3807 3808 3809
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
3810 3811 3812 3813 3814
    else:
        return None


@config_func
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
3836 3837
              update_hooks=None,
              initializer=None):
3838 3839 3840 3841 3842 3843 3844

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

3856 3857
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3858 3859 3860 3861 3862

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

3863 3864 3865 3866
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3867

3868 3869
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3870 3871 3872
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

3873 3874 3875 3876 3877 3878
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
3879 3880
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3881 3882
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
3883 3884
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
3885 3886 3887 3888 3889 3890
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
3891 3892 3893
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
3894 3895 3896 3897
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3898 3899 3900 3901 3902 3903 3904

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
3905 3906 3907 3908
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3909 3910
    if is_shared is not None:
        para.is_shared = is_shared
3911 3912 3913 3914 3915

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3916
            update_hooks = update_hooks()
3917 3918 3919 3920 3921

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3922
            para.update_hooks.extend([update_hooks])
3923 3924

    g_parameter_map[name] = para
3925 3926 3927 3928 3929
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
3930 3931 3932 3933 3934 3935 3936


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

3937

3938 3939 3940 3941 3942
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

3943

3944 3945 3946 3947 3948
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

3949

3950 3951 3952 3953 3954
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

3955

3956 3957 3958 3959 3960
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

3961

3962 3963 3964 3965 3966
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

3967

3968 3969 3970 3971 3972
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

3973

3974 3975 3976 3977 3978
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

3979

3980 3981 3982 3983 3984
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

3985

3986 3987 3988 3989 3990
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

3991

3992 3993 3994 3995 3996
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

3997

3998 3999 4000 4001 4002
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
4003 4004 4005
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

4006 4007
    return Import

4008

4009
DEFAULT_SETTING = dict(
4010 4011 4012 4013 4014
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
4015
    gradient_clipping_threshold=None,
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
4038 4039 4040
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
4041

4042
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
4043

4044
settings_deprecated = dict(usage_ratio=1., )
4045 4046 4047 4048

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
4049 4050
    start_pass=0, )

4051 4052 4053 4054 4055

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
4056 4057
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

4069

4070 4071 4072 4073
@config_func
def cluster_config(**args):
    pass

4074

4075 4076 4077 4078 4079 4080 4081 4082 4083
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

4084

4085 4086 4087 4088
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
4089

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
4105
        get_config_arg=make_get_config_arg(config_args), )
4106 4107 4108 4109 4110

    funcs.update(g_extended_config_funcs)

    return funcs

4111

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

4128

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

4141

4142 4143 4144 4145
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4146

4147
_parse_config_hooks = set()
Y
Yu Yang 已提交
4148 4149


4150 4151 4152 4153 4154 4155 4156
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
4157

Y
Yu Yang 已提交
4158

4159
def update_g_config():
4160
    '''
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4184
def begin_parse():
4185
    init_config_environment()
4186 4187
    for hook in _parse_config_hooks:
        hook()
4188 4189 4190 4191 4192

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4202 4203 4204 4205
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4206

4207
    begin_parse()
X
xuwei06 已提交
4208 4209
    config_args = {}

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4222 4223
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4224
            make_config_environment("", config_args))
4225
        trainer_config()
4226
    else:
4227 4228
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
4229

4230
    return update_g_config()
4231 4232


4233
def parse_config_and_serialize(trainer_config, config_arg_str):
4234
    try:
4235
        config = parse_config(trainer_config, config_arg_str)
4236 4237 4238 4239 4240 4241
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

4242

4243 4244 4245 4246 4247 4248 4249 4250
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise
反馈
建议
客服 返回
顶部