Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1cdf149b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1cdf149b
编写于
7月 19, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. delete PixelSoftmaxLayer and add SwitchOrderLayer
2. Make SwitchOrderLayer support for softmax activation 3. Fix bugs
上级
475dd708
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
231 addition
and
109 deletion
+231
-109
CMakeLists.txt
CMakeLists.txt
+1
-1
paddle/function/SwitchOp.cpp
paddle/function/SwitchOp.cpp
+40
-32
paddle/function/SwitchOp.h
paddle/function/SwitchOp.h
+6
-2
paddle/function/SwitchOpGpu.cu
paddle/function/SwitchOpGpu.cu
+18
-8
paddle/gserver/layers/SwitchOrderLayer.cpp
paddle/gserver/layers/SwitchOrderLayer.cpp
+112
-0
paddle/gserver/layers/SwitchOrderLayer.h
paddle/gserver/layers/SwitchOrderLayer.h
+11
-8
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+10
-4
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+0
-21
paddle/math/Matrix.h
paddle/math/Matrix.h
+0
-1
proto/ModelConfig.proto
proto/ModelConfig.proto
+8
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+7
-14
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+18
-18
未找到文件。
CMakeLists.txt
浏览文件 @
1cdf149b
...
...
@@ -13,7 +13,7 @@
# limitations under the License
cmake_minimum_required
(
VERSION 3.0
)
SET
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-ldl -lpthread"
)
set
(
CMAKE_MODULE_PATH
${
CMAKE_MODULE_PATH
}
"
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake"
)
set
(
PROJ_ROOT
${
CMAKE_CURRENT_SOURCE_DIR
}
)
set
(
PROJ_BINARY_ROOT
${
CMAKE_CURRENT_BINARY_DIR
}
)
...
...
paddle/function/SwitchOp.cpp
浏览文件 @
1cdf149b
...
...
@@ -23,12 +23,17 @@ void NCHW2NHWC<DEVICE_TYPE_CPU>(real* outputs,
const
int
num
,
const
int
inC
,
const
int
inH
,
const
int
inW
)
{
const
int
inW
,
const
int
argType
)
{
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
inC
;
++
c
)
{
for
(
int
h
=
0
;
h
<
inH
;
++
h
)
{
for
(
int
w
=
0
;
w
<
inW
;
++
w
)
{
outputs
[((
n
*
inH
+
h
)
*
inW
+
w
)
*
inC
+
c
]
=
*
(
inputs
++
);
if
(
argType
==
ADD_TO
)
{
outputs
[((
n
*
inH
+
h
)
*
inW
+
w
)
*
inC
+
c
]
+=
*
(
inputs
++
);
}
else
{
outputs
[((
n
*
inH
+
h
)
*
inW
+
w
)
*
inC
+
c
]
=
*
(
inputs
++
);
}
}
}
}
...
...
@@ -41,12 +46,17 @@ void NHWC2NCHW<DEVICE_TYPE_CPU>(real* outputs,
const
int
num
,
const
int
inH
,
const
int
inW
,
const
int
inC
)
{
const
int
inC
,
const
int
argType
)
{
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
h
=
0
;
h
<
inH
;
++
h
)
{
for
(
int
w
=
0
;
w
<
inW
;
++
w
)
{
for
(
int
c
=
0
;
c
<
inC
;
++
c
)
{
outputs
[((
n
*
inC
+
c
)
*
inH
+
h
)
*
inW
+
w
]
=
*
(
inputs
++
);
if
(
argType
==
ADD_TO
)
{
outputs
[((
n
*
inC
+
c
)
*
inH
+
h
)
*
inW
+
w
]
+=
*
(
inputs
++
);
}
else
{
outputs
[((
n
*
inC
+
c
)
*
inH
+
h
)
*
inW
+
w
]
=
*
(
inputs
++
);
}
}
}
}
...
...
@@ -54,23 +64,15 @@ void NHWC2NCHW<DEVICE_TYPE_CPU>(real* outputs,
}
/**
* \brief
Padding zeros to input according to the specify dimension
.
*
The struct pad_ contains the padding size in each dimension.
*
The input and output is a 4D tensor. In PadFunc, we only
*
pad zeros to the 2nd to 4th dimension
.
* \brief
Switch dimension order of image input
.
*
The input and output is a 4D tensor. Switch order
*
'batch_size,channels, height, width' to
*
order 'batch_size, height, width, channels'
.
*
* Argument in this Function:
* \param pad_ A struct object contains the padding size in each dimension.
* It has six integers. The channelStart and channelEnd indicate
* how many zeros to add before and after the input in channel
* dimension. And the heightStart and heightEnd indicate padding
* in height dimension. The widthStart and widthEnd indicate the
* padding in width dimension.
* \param inputs A 4D tensor, only one input.
* \param outputs A 4D tensor, the output value after padding.
*
* \param inputs input data with order 'batch_size,channels, height, width'.
* \param outputs output data with order 'batch_size, height, width, channels'.
*/
template
<
DeviceType
Device
>
class
NCHW2NHWCFunc
:
public
FunctionBase
{
public:
...
...
@@ -84,25 +86,26 @@ public:
size_t
inC
=
inputs
[
0
].
shape
()[
1
];
size_t
inH
=
inputs
[
0
].
shape
()[
2
];
size_t
inW
=
inputs
[
0
].
shape
()[
3
];
typename
Tensor
<
real
,
Device
>::
Vector
vec
(
outputs
[
0
].
shape
().
getElements
(),
outputs
[
0
].
data
<
real
>
());
vec
.
zero
();
NCHW2NHWC
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
num
,
inC
,
inH
,
inW
);
NCHW2NHWC
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
num
,
inC
,
inH
,
inW
,
outputs
[
0
].
getArgType
());
}
};
/**
* \brief The backward propagation of padding Function. Remove the elements
* in the padding positions of forward.
* \brief Switch dimension order of image input.
* The input and output is a 4D tensor. Switch order
* 'batch_size, height, width, channels' to
* order 'batch_size, channels, height, width'.
*
* Argument in this Function:
* \param pad_ The same meaning as it in PadFunc.
* \param inputs The gradient with respect to the output value of PadFunc.
* \param outputs The gradient with respect to the input value of PadFunc.
* \param inputs input data with order 'batch_size, height, width, channels'.
* \param outputs output data with order 'batch_size, channels, height, width'.
*/
template
<
DeviceType
Device
>
class
NHWC2NCHWFunc
:
public
FunctionBase
{
public:
...
...
@@ -117,8 +120,13 @@ public:
size_t
inW
=
inputs
[
0
].
shape
()[
2
];
size_t
inC
=
inputs
[
0
].
shape
()[
3
];
NHWC2NCHW
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
num
,
inH
,
inW
,
inC
);
NHWC2NCHW
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
num
,
inH
,
inW
,
inC
,
outputs
[
0
].
getArgType
());
}
};
...
...
paddle/function/SwitchOp.h
浏览文件 @
1cdf149b
...
...
@@ -30,6 +30,7 @@ namespace paddle {
* \param[in] inC channel number of input data.
* \param[in] inH height of input data.
* \param[in] inH with of input data.
* \param[in] argType type of output argument.
*/
template
<
DeviceType
Device
>
void
NCHW2NHWC
(
real
*
outputs
,
...
...
@@ -37,7 +38,8 @@ void NCHW2NHWC(real* outputs,
const
int
num
,
const
int
inC
,
const
int
inH
,
const
int
inW
);
const
int
inW
,
const
int
argtype
);
/**
* \brief This funtion switch dimension order of image input.
...
...
@@ -51,6 +53,7 @@ void NCHW2NHWC(real* outputs,
* \param[in] inH height of input data.
* \param[in] inW with of input data.
* \param[in] inC channel number of input data.
* \param[in] argType type of output argument.
*/
template
<
DeviceType
Device
>
void
NHWC2NCHW
(
real
*
inGrad
,
...
...
@@ -58,5 +61,6 @@ void NHWC2NCHW(real* inGrad,
const
int
num
,
const
int
inH
,
const
int
inW
,
const
int
inC
);
const
int
inC
,
const
int
argType
);
}
// namespace paddle
paddle/function/SwitchOpGpu.cu
浏览文件 @
1cdf149b
...
...
@@ -19,7 +19,7 @@ namespace paddle {
__global__
void
KeNCHW2NHWC
(
real
*
outputs
,
const
real
*
inputs
,
int
inC
,
int
inH
,
int
inW
,
int
nthreads
)
{
int
nthreads
,
int
argType
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
nthreads
)
{
const
int
w
=
idx
%
inW
;
...
...
@@ -28,7 +28,11 @@ __global__ void KeNCHW2NHWC(real* outputs, const real* inputs,
const
int
n
=
idx
/
inW
/
inH
/
inC
;
const
int
off
=
((
n
*
inH
+
h
)
*
inW
+
w
)
*
inC
+
c
;
outputs
[
off
]
=
inputs
[
idx
];
if
(
argType
==
ADD_TO
)
{
outputs
[
off
]
+=
inputs
[
idx
];
}
else
{
outputs
[
off
]
=
inputs
[
idx
];
}
}
}
...
...
@@ -38,18 +42,19 @@ void NCHW2NHWC<DEVICE_TYPE_GPU>(real* outputs,
const
int
num
,
const
int
inC
,
const
int
inH
,
const
int
inW
)
{
const
int
inW
,
const
int
argType
)
{
size_t
nth
=
num
*
inC
*
inH
*
inW
;
int
blockSize
=
1024
;
int
gridSize
=
(
nth
+
1024
-
1
)
/
1024
;
KeNCHW2NHWC
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
outputs
,
inputs
,
inC
,
inH
,
inW
,
nth
);
(
outputs
,
inputs
,
inC
,
inH
,
inW
,
nth
,
argType
);
CHECK_SYNC
(
"NCHW2NHWC"
);
}
__global__
void
KeNHWC2NCHW
(
real
*
outputs
,
const
real
*
inputs
,
int
inH
,
int
inW
,
int
inC
,
int
nthreads
)
{
int
nthreads
,
int
argType
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
nthreads
)
{
const
int
c
=
idx
%
inC
;
...
...
@@ -58,7 +63,11 @@ __global__ void KeNHWC2NCHW(real* outputs, const real* inputs,
const
int
n
=
idx
/
inW
/
inH
/
inC
;
const
int
off
=
((
n
*
inC
+
c
)
*
inH
+
h
)
*
inW
+
w
;
outputs
[
off
]
=
inputs
[
idx
];
if
(
argType
==
ADD_TO
)
{
outputs
[
off
]
+=
inputs
[
idx
];
}
else
{
outputs
[
off
]
=
inputs
[
idx
];
}
}
}
...
...
@@ -68,12 +77,13 @@ void NHWC2NCHW<DEVICE_TYPE_GPU>(real* outputs,
const
int
num
,
const
int
inH
,
const
int
inW
,
const
int
inC
)
{
const
int
inC
,
const
int
argType
)
{
int
nth
=
num
*
inC
*
inH
*
inW
;
int
blockSize
=
1024
;
int
gridSize
=
(
nth
+
1024
-
1
)
/
1024
;
KeNHWC2NCHW
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
outputs
,
inputs
,
inH
,
inW
,
inC
,
nth
);
(
outputs
,
inputs
,
inH
,
inW
,
inC
,
nth
,
argType
);
CHECK_SYNC
(
"NHWC2NCHW"
);
}
...
...
paddle/gserver/layers/
PixelSoftmax
Layer.cpp
→
paddle/gserver/layers/
SwitchOrder
Layer.cpp
浏览文件 @
1cdf149b
...
...
@@ -12,78 +12,101 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "
PixelSoftmax
Layer.h"
#include "
SwitchOrder
Layer.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_LAYER
(
pixel_softmax
,
PixelSoftmax
Layer
);
REGISTER_LAYER
(
switch_order
,
SwitchOrder
Layer
);
bool
PixelSoftmax
Layer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
SwitchOrder
Layer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
auto
&
img_conf
=
config_
.
inputs
(
0
).
image_conf
();
inH_
=
size_t
inH
=
img_conf
.
has_img_size_y
()
?
img_conf
.
img_size_y
()
:
img_conf
.
img_size
();
inW_
=
img_conf
.
img_size
();
inC_
=
img_conf
.
channels
();
createFunction
(
forward_
,
"NCHW2NHWC"
,
FuncConfig
());
createFunction
(
backward_
,
"NHWC2NCHW"
,
FuncConfig
());
inDims_
=
TensorShape
({
0
,
inH_
,
inW_
,
inC_
});
outDims_
=
TensorShape
({
0
,
inC_
,
inH_
,
inW_
});
size_t
inW
=
img_conf
.
img_size
();
size_t
inC
=
img_conf
.
channels
();
inDims_
=
TensorShape
({
0
,
inC
,
inH
,
inW
});
outDims_
=
TensorShape
(
4
);
auto
&
reshape_conf
=
config_
.
reshape_conf
();
for
(
size_t
i
=
0
;
i
<
reshape_conf
.
heightaxis_size
();
i
++
)
{
LOG
(
INFO
)
<<
"reshape height axis: "
<<
reshape_conf
.
heightaxis
(
i
);
heightAxis_
.
push_back
(
reshape_conf
.
heightaxis
(
i
));
}
for
(
size_t
i
=
0
;
i
<
reshape_conf
.
widthaxis_size
();
i
++
)
{
LOG
(
INFO
)
<<
"reshape width axis: "
<<
reshape_conf
.
widthaxis
(
i
);
widthAxis_
.
push_back
(
reshape_conf
.
widthaxis
(
i
));
}
createFunction
(
nchw2nhwc_
,
"NCHW2NHWC"
,
FuncConfig
());
createFunction
(
nhwc2nchw_
,
"NHWC2NCHW"
,
FuncConfig
());
return
true
;
}
void
PixelSoftmaxLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
void
SwitchOrderLayer
::
setOutDims
()
{
outDims_
.
setDim
(
0
,
inDims_
[
0
]);
outDims_
.
setDim
(
1
,
inDims_
[
2
]);
outDims_
.
setDim
(
2
,
inDims_
[
3
]);
outDims_
.
setDim
(
3
,
inDims_
[
1
]);
reshapeHeight_
=
1
;
for
(
size_t
i
=
0
;
i
<
heightAxis_
.
size
();
i
++
)
{
reshapeHeight_
*=
outDims_
[
heightAxis_
[
i
]];
}
output_
.
setFrameHeight
(
reshapeHeight_
);
reshapeWidth_
=
1
;
for
(
size_t
i
=
0
;
i
<
widthAxis_
.
size
();
i
++
)
{
reshapeWidth_
*=
outDims_
[
widthAxis_
[
i
]];
}
output_
.
setFrameWidth
(
reshapeWidth_
);
LOG
(
INFO
)
<<
"outDims: "
<<
outDims_
[
0
]
<<
"; "
<<
outDims_
[
1
]
<<
";"
<<
outDims_
[
2
]
<<
";"
<<
outDims_
[
3
];
}
void
SwitchOrderLayer
::
setInDims
()
{
MatrixPtr
input
=
inputLayers_
[
0
]
->
getOutputValue
();
size_t
batchSize
=
input
->
getHeight
();
// cout<<"useGpu:"<<useGpu(deviceId_)<<endl;
Matrix
::
resizeOrCreate
(
tmpInput_
,
batchSize
*
inH_
*
inW_
,
inC_
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
tmpOutput_
,
batchSize
*
inH_
*
inW_
,
inC_
,
false
,
useGpu_
);
tmpOutput_
->
zeroMem
();
resetOutput
(
batchSize
,
inH_
*
inW_
*
inC_
);
inDims_
.
setDim
(
0
,
batchSize
);
outDims_
.
setDim
(
0
,
batchSize
);
int
h
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
if
(
h
!=
0
)
inDims_
.
setDim
(
2
,
h
);
int
w
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
w
!=
0
)
inDims_
.
setDim
(
3
,
w
);
int
totalCount
=
input
->
getElementCnt
();
int
channels
=
totalCount
/
(
inDims_
[
0
]
*
inDims_
[
2
]
*
inDims_
[
3
]);
if
(
channels
!=
0
)
inDims_
.
setDim
(
1
,
channels
);
LOG
(
INFO
)
<<
"inDims: "
<<
inDims_
[
0
]
<<
"; "
<<
inDims_
[
1
]
<<
";"
<<
inDims_
[
2
]
<<
";"
<<
inDims_
[
3
];
}
void
SwitchOrderLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
setInDims
();
setOutDims
();
resetOutput
(
outDims_
[
0
],
outDims_
[
1
]
*
outDims_
[
2
]
*
outDims_
[
3
]);
if
(
heightAxis_
.
size
()
>
0
)
{
getOutputValue
()
->
reshape
(
reshapeHeight_
,
reshapeWidth_
);
}
// switch NCHW to NHWC
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
getInputValue
(
0
),
inDims_
);
outputs
.
addArg
(
*
tmpInput_
,
outDims_
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
// softmax forward and save softmax result into tmpMatrix_
tmpInput_
->
softmax
(
*
tmpOutput_
);
// switch NHWC to NCHW
BufferArgs
inputs_1
;
BufferArgs
outputs_1
;
inputs_1
.
addArg
(
*
tmpOutput_
,
outDims_
);
outputs_1
.
addArg
(
*
getOutputValue
(),
inDims_
);
backward_
[
0
]
->
calc
(
inputs_1
,
outputs_1
);
outputs
.
addArg
(
*
getOutputValue
(),
outDims_
);
nchw2nhwc_
[
0
]
->
calc
(
inputs
,
outputs
);
// forwardActivation();
}
void
PixelSoftmax
Layer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
SwitchOrder
Layer
::
backward
(
const
UpdateCallback
&
callback
)
{
(
void
)
callback
;
REGISTER_TIMER_INFO
(
"PixelSoftmaxBackward"
,
getName
().
c_str
()
);
// backwardActivation(
);
// switch N
CHW to NHWC
// switch N
HWC to NCHW
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
getOutputGrad
(),
inDims_
);
outputs
.
addArg
(
*
tmpInput_
,
outDims_
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
// softmax backward and save grad result into tmpOutput_
tmpInput_
->
softmaxBackward
(
*
tmpOutput_
);
// switch NHWC to NCHW
BufferArgs
inputs_1
;
BufferArgs
outputs_1
;
inputs_1
.
addArg
(
*
tmpInput_
,
outDims_
);
outputs_1
.
addArg
(
*
getInputGrad
(
0
),
inDims_
);
backward_
[
0
]
->
calc
(
inputs_1
,
outputs_1
);
inputs
.
addArg
(
*
getOutputGrad
(),
outDims_
);
outputs
.
addArg
(
*
getInputGrad
(
0
),
inDims_
,
ADD_TO
);
nhwc2nchw_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
// namespace paddle
paddle/gserver/layers/
PixelSoftmax
Layer.h
→
paddle/gserver/layers/
SwitchOrder
Layer.h
浏览文件 @
1cdf149b
...
...
@@ -21,24 +21,27 @@ namespace paddle {
/**
* \brief This layer calculate softmax in image channel dimension.
*/
class
PixelSoftmax
Layer
:
public
Layer
{
class
SwitchOrder
Layer
:
public
Layer
{
public:
explicit
PixelSoftmax
Layer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
explicit
SwitchOrder
Layer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
PixelSoftmax
Layer
()
{}
~
SwitchOrder
Layer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
void
setInDims
();
void
setOutDims
();
protected:
uint32_t
inC_
;
uint32_t
inH_
;
uint32_t
inW_
;
std
::
vector
<
std
::
shared_ptr
<
FunctionBase
>>
nchw2nhwc_
;
std
::
vector
<
std
::
shared_ptr
<
FunctionBase
>>
nhwc2nchw_
;
TensorShape
inDims_
;
TensorShape
outDims_
;
MatrixPtr
tmpInput_
;
MatrixPtr
tmpOutput_
;
std
::
vector
<
int
>
heightAxis_
;
std
::
vector
<
int
>
widthAxis_
;
size_t
reshapeHeight_
;
size_t
reshapeWidth_
;
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
1cdf149b
...
...
@@ -1802,7 +1802,7 @@ TEST(Layer, RowConvLayer) {
}
}
TEST
(
Layer
,
PixelSoftmax
Layer
)
{
TEST
(
Layer
,
SwitchOrder
Layer
)
{
TestConfig
config
;
// config input_0
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
0
});
...
...
@@ -1812,12 +1812,18 @@ TEST(Layer, PixelSoftmaxLayer) {
img
->
set_img_size
(
16
);
img
->
set_img_size_y
(
16
);
ReshapeConfig
*
reshape
=
config
.
layerConfig
.
mutable_reshape_conf
();
reshape
->
add_heightaxis
(
0
);
reshape
->
add_heightaxis
(
1
);
reshape
->
add_heightaxis
(
2
);
reshape
->
add_widthaxis
(
3
);
// config softmax layer
config
.
layerConfig
.
set_type
(
"
pixel_softmax
"
);
config
.
layerConfig
.
set_name
(
"
pixelSofrmax
Layer"
);
config
.
layerConfig
.
set_type
(
"
switch_order
"
);
config
.
layerConfig
.
set_name
(
"
switchOrder
Layer"
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"
pixel_softmax"
,
100
,
false
,
useGpu
,
true
,
2
);
testLayerGrad
(
config
,
"
switch_order"
,
100
,
false
,
useGpu
,
true
);
}
}
...
...
paddle/math/Matrix.cpp
浏览文件 @
1cdf149b
...
...
@@ -3385,27 +3385,6 @@ void CpuMatrix::oneHotCrossEntropyWithSelfNormBp(Matrix& output,
real* out = output.getData(); \
for (size_t i = 0; i < numSamples; ++i, grad += dim, out += dim)
void
CpuMatrix
::
softmaxBackward
(
Matrix
&
outputV
)
{
CHECK
(
!
outputV
.
useGpu
())
<<
"Matrix type are not equal"
;
size_t
height
=
getHeight
();
size_t
width
=
getWidth
();
CHECK
(
height
==
outputV
.
getHeight
()
&&
width
==
outputV
.
getWidth
())
<<
"Matrix dimensions are not equal"
;
Matrix
::
resizeOrCreate
(
sftmaxDot_
,
height_
,
width_
,
/* trans */
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
sftmaxSum_
,
height_
,
1
,
/* trans */
false
,
useGpu_
);
sftmaxDot_
->
dotMul
(
*
this
,
outputV
);
sftmaxSum_
->
colMerge
(
*
sftmaxDot_
);
softmaxDerivative
(
outputV
,
*
sftmaxSum_
);
}
void
CpuMatrix
::
softmax
(
Matrix
&
output
)
{
CHECK
(
!
output
.
useGpu
());
...
...
paddle/math/Matrix.h
浏览文件 @
1cdf149b
...
...
@@ -1732,7 +1732,6 @@ public:
Matrix
&
prevGrad2
);
void
softmax
(
Matrix
&
output
);
void
softmaxBackward
(
Matrix
&
outputV
);
void
sequenceSoftmax
(
Matrix
&
output
,
const
IVector
&
index
);
void
softmaxDerivative
(
Matrix
&
output
,
Matrix
&
sftmaxSum
);
...
...
proto/ModelConfig.proto
浏览文件 @
1cdf149b
...
...
@@ -266,6 +266,11 @@ message PadConfig {
repeated
uint32
pad_w
=
4
;
}
message
ReshapeConfig
{
repeated
uint32
heightAxis
=
1
;
repeated
uint32
widthAxis
=
2
;
}
message
MultiBoxLossConfig
{
required
uint32
num_classes
=
1
;
required
float
overlap_threshold
=
2
;
...
...
@@ -476,6 +481,9 @@ message LayerConfig {
// controls the scope of pooling operation. can be set > 0.
// leave empty or set to -1 to disable this stride pooling.
optional
int32
seq_pool_stride
=
53
[
default
=
-
1
];
// for switch order layer
optional
ReshapeConfig
reshape_conf
=
54
;
}
message
EvaluatorConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
1cdf149b
...
...
@@ -3174,20 +3174,13 @@ class RecurrentLayerGroup(LayerBase):
name
,
'recurrent_layer_group'
,
0
,
inputs
=
[],
device
=
device
)
@
config_layer
(
'pixel_softmax'
)
class
PixelSoftmaxLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
PixelSoftmaxLayer
,
self
).
__init__
(
name
,
'pixel_softmax'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer
=
self
.
get_input_layer
(
0
)
image_conf
=
self
.
config
.
inputs
[
0
].
image_conf
image_conf
.
img_size
=
input_layer
.
width
image_conf
.
img_size_y
=
input_layer
.
height
image_conf
.
channels
=
input_layer
.
size
/
(
input_layer
.
width
*
input_layer
.
height
)
self
.
set_cnn_layer
(
name
,
image_conf
.
img_size_y
,
image_conf
.
img_size
,
image_conf
.
channels
)
@
config_layer
(
'switch_order'
)
class
SwitchOrderLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
reshape
,
**
xargs
):
super
(
SwitchOrderLayer
,
self
).
__init__
(
name
,
'switch_order'
,
0
,
inputs
=
inputs
,
**
xargs
)
self
.
conf
.
reshape_conf
.
heightAxis_
=
reshape
[
'height'
]
self
.
conf
.
reshape_conf
.
widthAxis_
=
reshape
[
'width'
]
# Deprecated, use a new layer specific class instead
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
1cdf149b
...
...
@@ -126,7 +126,7 @@ __all__ = [
'row_conv_layer'
,
'dropout_layer'
,
'prelu_layer'
,
'
pixel_softmax
_layer'
,
'
switch_order
_layer'
,
]
...
...
@@ -218,7 +218,7 @@ class LayerType(object):
SMOOTH_L1
=
'smooth_l1'
PRELU
=
'prelu'
PIXEL_SOFTMAX_LAYER
=
'pixel_softmax
'
SWITCH_ORDER_LAYER
=
'switch_order
'
@
staticmethod
def
is_layer_type
(
type_name
):
...
...
@@ -5881,37 +5881,37 @@ def prelu_layer(input,
@
layer_support
()
@
wrap_name_default
(
'
pixel_softmax
'
)
def
pixel_softmax_layer
(
input
,
nam
e
=
None
,
layer_attr
=
None
):
@
wrap_name_default
(
'
switch_order
'
)
def
switch_order_layer
(
input
,
name
=
None
,
reshap
e
=
None
,
layer_attr
=
None
):
"""
This layer calculate softmax in image channel dimension
This layer switch dimension order of image input.
From order "batchSize, channels, height, width"
to order "batchSize, height, width, channels".
The example usage is:
.. code-block:: python
reshape = {'height':[ 0, 1, 2], 'width':[3]}
switch = switch_order(input=layer, name='switch', reshape=reshape)
prelu = pixel_softmax(input=layer, name='softmax')
:param name: Name of this layer.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput
:param name: Name of this layer.
:type name: basestring
:param reshape: reshape matrix by axises.
:type reshape: Dict
:return: LayerOutput object.
:rtype: LayerOutput
"""
if
isinstance
(
input
,
LayerOutput
):
input
=
[
input
]
elif
isinstance
(
input
,
Projection
):
input
=
[
input
]
else
:
assert
isinstance
(
input
,
collections
.
Sequence
)
assert
isinstance
(
input
,
LayerOutput
)
l
=
Layer
(
name
=
name
,
inputs
=
[
x
.
name
for
x
in
input
],
type
=
LayerType
.
PIXEL_SOFTMAX_LAYER
,
inputs
=
input
,
reshape
=
reshape
,
type
=
LayerType
.
SWITCH_ORDER_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
PIXEL_SOFTMAX
_LAYER
,
layer_type
=
LayerType
.
SWITCH_ORDER
_LAYER
,
parents
=
input
,
size
=
l
.
config
.
size
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录