Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e6db484d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e6db484d
编写于
8月 14, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make clear that current huber_cost is for two-classification
上级
493e1c04
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
50 addition
and
40 deletion
+50
-40
paddle/gserver/layers/CostLayer.cpp
paddle/gserver/layers/CostLayer.cpp
+16
-13
paddle/gserver/layers/CostLayer.h
paddle/gserver/layers/CostLayer.h
+7
-11
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+1
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+19
-8
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+5
-5
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
.../trainer_config_helpers/tests/configs/test_cost_layers.py
+1
-1
未找到文件。
paddle/gserver/layers/CostLayer.cpp
浏览文件 @
e6db484d
...
...
@@ -575,10 +575,10 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output,
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER
(
huber
,
HuberTwoClass
);
REGISTER_LAYER
(
huber
,
HuberTwoClass
ification
);
bool
HuberTwoClass
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
HuberTwoClass
ification
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
CostLayer
::
init
(
layerMap
,
parameterMap
);
if
(
useGpu_
)
{
tmpCpuInput_
.
reserve
(
inputLayers_
.
size
());
...
...
@@ -589,7 +589,9 @@ bool HuberTwoClass::init(const LayerMap& layerMap,
return
true
;
}
void
HuberTwoClass
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
void
HuberTwoClassification
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
if
(
useGpu_
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
tmpCpuInput_
[
i
].
resizeAndCopyFrom
(
...
...
@@ -600,10 +602,11 @@ void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
forwardImpIn
(
output
,
label
,
cost
);
}
void
HuberTwoClass
::
forwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
void
HuberTwoClass
ification
::
forwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
size_t
numSamples
=
target
.
getHeight
();
CHECK
(
label
.
ids
);
CHECK_EQ
((
*
label
.
ids
).
getSize
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
output
.
getWidth
(),
(
size_t
)
1
);
...
...
@@ -624,9 +627,9 @@ void HuberTwoClass::forwardImpIn(Matrix& output,
target
.
copyFrom
(
cost
.
data
(),
numSamples
);
}
void
HuberTwoClass
::
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{
void
HuberTwoClass
ification
::
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{
if
(
useGpu_
)
{
backwardImpIn
(
*
tmpCpuInput_
[
0
].
value
,
tmpCpuInput_
[
1
],
*
tmpCpuInput_
[
0
].
grad
);
...
...
@@ -636,9 +639,9 @@ void HuberTwoClass::backwardImp(Matrix& outputValue,
}
}
void
HuberTwoClass
::
backwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
void
HuberTwoClass
ification
::
backwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
size_t
numSamples
=
output
.
getHeight
();
real
*
out
=
output
.
getData
();
real
*
grad
=
outputG
.
getData
();
...
...
paddle/gserver/layers/CostLayer.h
浏览文件 @
e6db484d
...
...
@@ -307,21 +307,17 @@ public:
/**
* Huber loss for robust 2-classes classification.
*
* For label={0, 1}, let y=2*label-1. Given output f, the loss is:
* \f[
* Loss =
* \left\{\begin{matrix}
* 4 * y * f & \textit{if} \ \ y* f < -1 \\
* (1 - y * f)^2 & \textit{if} \ \ -1 < y * f < 1 \\
* 0 & \textit{otherwise}
* \end{matrix}\right.
* \f]
* For label={0, 1}, let y=2*label-1. Given output f(x), the loss is:
* Loss = 4 * y * f, if y* f < -1 \\
* Loss = (1 - y * f)^2, if -1 < y * f < 1 \\
* Loss = 0, otherwise
*/
class
HuberTwoClass
:
public
CostLayer
{
class
HuberTwoClass
ification
:
public
CostLayer
{
std
::
vector
<
Argument
>
tmpCpuInput_
;
public:
explicit
HuberTwoClass
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
explicit
HuberTwoClassification
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
e6db484d
...
...
@@ -830,7 +830,7 @@ TEST(Layer, square_error_weighted) {
TEST
(
Layer
,
huber_two_class
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber"
);
config
.
layerConfig
.
set_type
(
"huber
_classification
"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
e6db484d
...
...
@@ -2255,7 +2255,7 @@ define_cost('PnpairValidation', 'pnpair-validation')
define_cost
(
'SumOfSquaresCostLayer'
,
'square_error'
)
define_cost
(
'MultiBinaryLabelCrossEntropy'
,
'multi_binary_label_cross_entropy'
)
define_cost
(
'SoftBinaryClassCrossEntropy'
,
'soft_binary_class_cross_entropy'
)
define_cost
(
'HuberTwoClass
'
,
'huber
'
)
define_cost
(
'HuberTwoClass
ification'
,
'huber_classification
'
)
define_cost
(
'SumCost'
,
'sum_cost'
)
define_cost
(
'SmoothL1Cost'
,
'smooth_l1'
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
e6db484d
...
...
@@ -108,7 +108,7 @@ __all__ = [
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'huber_c
lassification_c
ost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
...
...
@@ -216,7 +216,7 @@ class LayerType(object):
RANK_COST
=
'rank-cost'
LAMBDA_COST
=
'lambda_cost'
HUBER
=
'huber
'
HUBER
_CLASSIFICATION
=
'huber_classification
'
CROSS_ENTROPY
=
'multi-class-cross-entropy'
CROSS_ENTROPY_WITH_SELFNORM
=
'multi_class_cross_entropy_with_selfnorm'
SOFT_BIN_CLASS_CROSS_ENTROPY
=
'soft_binary_class_cross_entropy'
...
...
@@ -5605,16 +5605,26 @@ def sum_cost(input, name=None, layer_attr=None):
@
wrap_name_default
()
@
layer_support
()
def
huber_cost
(
input
,
label
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
def
huber_classification_cost
(
input
,
label
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
"""
A loss layer for huber loss.
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1
\r
ight \}`, the modified Huber
loss is defined as:
.. math:
loss = \max \left ( 0, 1-yf(x)
\r
ight )^2, yf(x)\geq 1
loss = -4yf(x),
\t
ext{otherwise}
The example usage is:
.. code-block:: python
cost = huber_cost(input=input_layer,
label=label_layer)
cost = huber_classification_cost(input=input_layer, label=label_layer)
:param input: The first input layer.
:type input: LayerOutput.
...
...
@@ -5634,11 +5644,12 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
assert
input
.
size
==
1
Layer
(
name
=
name
,
type
=
LayerType
.
HUBER
,
type
=
LayerType
.
HUBER
_CLASSIFICATION
,
inputs
=
[
input
.
name
,
label
.
name
],
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
HUBER
,
parents
=
[
input
,
label
],
size
=
1
)
return
LayerOutput
(
name
,
LayerType
.
HUBER_CLASSIFICATION
,
parents
=
[
input
,
label
],
size
=
1
)
@
wrap_name_default
()
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
浏览文件 @
e6db484d
...
...
@@ -180,8 +180,8 @@ layers {
active_type: ""
}
layers {
name: "__huber_cost_0__"
type: "huber"
name: "__huber_c
lassification_c
ost_0__"
type: "huber
_classification
"
size: 1
active_type: ""
inputs {
...
...
@@ -300,7 +300,7 @@ output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__huber_c
lassification_c
ost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
...
...
@@ -326,7 +326,7 @@ sub_models {
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "huber_probs"
layer_names: "huber_label"
layer_names: "__huber_cost_0__"
layer_names: "__huber_c
lassification_c
ost_0__"
layer_names: "__multi_binary_label_cross_entropy_0__"
layer_names: "__sum_cost_0__"
layer_names: "__nce_layer_0__"
...
...
@@ -349,7 +349,7 @@ sub_models {
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__huber_c
lassification_c
ost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
...
...
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
浏览文件 @
e6db484d
...
...
@@ -33,7 +33,7 @@ outputs(
input
=
probs
,
label
=
xe_label
),
cross_entropy_with_selfnorm
(
input
=
probs
,
label
=
xe_label
),
huber_cost
(
huber_c
lassification_c
ost
(
input
=
data_layer
(
name
=
'huber_probs'
,
size
=
1
),
label
=
data_layer
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录