analysis_predictor.cc 69.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/ir/pass.h"
32
#include "paddle/fluid/framework/naive_executor.h"
33
#include "paddle/fluid/framework/op_proto_maker.h"
34
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
35
#include "paddle/fluid/framework/var_type_traits.h"
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
39
#include "paddle/fluid/inference/api/helper.h"
40
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
41
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
42
#include "paddle/fluid/inference/utils/io_utils.h"
43
#include "paddle/fluid/inference/utils/singleton.h"
44
#include "paddle/fluid/memory/memcpy.h"
45
#include "paddle/fluid/platform/cpu_helper.h"
46
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
47
#include "paddle/fluid/platform/device_context.h"
48
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
49
#include "paddle/fluid/platform/profiler.h"
50
#include "paddle/phi/api/ext/op_meta_info.h"
51 52
#include "paddle/utils/string/split.h"

53
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
54 55 56 57
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
58

59 60 61 62
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

63 64 65 66
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

67 68 69 70
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
71 72
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
73
#include "paddle/fluid/inference/tensorrt/helper.h"
74
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
75 76
#endif

77 78 79 80
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

81 82
namespace paddle {

N
nhzlx 已提交
83
using inference::Singleton;
N
nhzlx 已提交
84
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
85 86
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
87
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
88
#endif
89

90 91
int AnalysisPredictor::clone_num_ = 1;

92 93 94 95
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
96 97
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
98 99 100 101 102 103
    return true;
  }
  return false;
}
}  // namespace

104 105
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
                             framework::LoDTensor *t,
106
                             const platform::Place &place) {
107
  framework::DDim ddim = phi::make_ddim(pt.shape);
108 109 110 111 112 113 114
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
115 116
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
133 134
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
135 136
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
137 138
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
139 140 141 142
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
143
  } else if (platform::is_gpu_place(place)) {
144 145
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
146 147
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
148
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
149 150 151
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
152
    auto dst_gpu_place = place;
153 154 155 156 157
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
158 159 160 161 162
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
163 164
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
165
    auto dst_xpu_place = place;
166 167 168 169 170
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
171 172 173 174 175 176 177
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
178 179 180 181 182 183 184 185 186 187
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
188
bool AnalysisPredictor::Init(
189 190
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
191
  VLOG(3) << "Predictor::init()";
192 193
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
194 195
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
196
    platform::EnableProfiler(tracking_device);
197
  } else {
198 199
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
200 201
  }

202
  // no matter with or without MKLDNN
L
luotao1 已提交
203
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
204

205 206 207 208 209 210 211 212 213 214
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

215 216 217
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

218 219 220
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
221
  }
222 223 224 225 226 227

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
228
  if (parent_scope) {
229 230
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
231 232
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
233
    scope_ = parent_scope;
234
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
235
  } else {
236
    paddle::framework::InitDevices();
237
    paddle::framework::InitDefaultKernelSignatureMap();
W
Wilber 已提交
238 239
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
240
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
241
  }
242 243 244 245 246
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
247 248
  if (!program) {
    if (!LoadProgramDesc()) return false;
249 250 251 252 253 254 255 256 257
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

258 259 260 261
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
262
  } else {
263 264
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
265 266
    inference_program_ = program;
  }
M
Michal Gallus 已提交
267

268 269 270 271 272
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
273
  if (config_.use_gpu()) {
274 275
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
276 277
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
278
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
279
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
280 281 282 283 284 285 286 287
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
288
  } else if (config_.use_xpu()) {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
312 313 314 315 316 317 318 319
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
336 337 338 339 340 341 342 343
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
#endif
344 345 346 347 348 349
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
369 370
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
371 372 373 374 375 376 377 378 379
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
380 381
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
382 383
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
384 385 386
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
387 388 389
  }
}

390
bool AnalysisPredictor::PrepareExecutor() {
391
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
392 393 394 395 396
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
397 398
  DisablePrepareDataOpt(inference_program_, 0, false);

399 400
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
401

402 403 404
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
405

406 407 408
  return true;
}

409
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
446 447 448 449 450 451 452
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
489 490 491 492 493 494
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
495 496 497 498 499 500 501 502 503 504 505
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
506 507 508 509 510
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
567 568
      static_cast<bool>(fin.is_open()),
      true,
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

641 642
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
643 644 645 646 647 648 649 650 651 652 653 654
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
655
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
656 657 658
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
659 660 661
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
662 663
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
664 665 666
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
667 668 669
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
670
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
671
  }
672 673 674
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

675 676 677 678 679 680
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
681 682 683 684
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
685 686 687 688 689 690 691 692
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
693 694 695
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
696 697 698 699
  }
#endif
}

700 701 702
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
703
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
704 705 706
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
707
  VLOG(3) << "Predictor::predict";
708 709 710 711
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
712 713 714
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
715 716
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
717
    return false;
718
  }
M
Michal Gallus 已提交
719

720 721 722
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
723

724 725 726 727
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
728
  }
Y
Yan Chunwei 已提交
729

M
minqiyang 已提交
730
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
731

Y
Yan Chunwei 已提交
732 733 734 735 736
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
737 738 739
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
740
  tensor_array_batch_cleaner_.ResetNoTensorVars();
741 742 743 744

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
745 746
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
747
#endif
748
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
749 750 751 752
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
753
#endif
754 755
  return true;
}
756

757 758
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
759
  VLOG(3) << "Predictor::set_feed";
760 761 762 763 764 765 766 767 768 769
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
770 771
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
772 773 774
      return false;
    }
    int idx = -1;
775
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
776 777
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
778 779
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
780 781
      }
      idx = feed_names_[name];
782
    } else {
783
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
784
    }
785
    framework::SetFeedVariable(scope, *input, "feed", idx);
786 787 788 789 790 791 792 793
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
794
  auto shape = phi::vectorize(fetch.dims());
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
812
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
813 814
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
815
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
816
    PADDLE_ENFORCE_EQ(
817 818
        static_cast<size_t>(idx),
        i,
819
        platform::errors::InvalidArgument(
820 821
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
822
            i));
823
    framework::FetchType &fetch_var =
824
        framework::GetFetchVariable(*scope, "fetch", idx);
825
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
826
    auto type = framework::TransToProtoVarType(fetch.dtype());
827
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
828
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
829
    if (type == framework::proto::VarType::FP32) {
830 831
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
832
    } else if (type == framework::proto::VarType::INT64) {
833 834
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
835 836 837
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
838 839 840
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
841
    } else {
842 843
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
844 845
    }
  }
Y
Yan Chunwei 已提交
846 847
  return true;
}
848

849
void AnalysisPredictor::PrepareArgument() {
850
  argument_.SetUseGPU(config_.use_gpu());
851
  argument_.SetUseFcPadding(config_.use_fc_padding());
852
  argument_.SetGPUDeviceId(config_.gpu_device_id());
853
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
854
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
855
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
856
  // Analyze inference_program
857
  argument_.SetPredictorID(predictor_id_);
858
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
859 860
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
861
  } else {
862 863
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
864 865
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
866
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
867

868 869
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
870
  }
871

872 873 874 875 876 877 878 879
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
  argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
880
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
881
    LOG(INFO) << "TensorRT subgraph engine is enabled";
882 883 884
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
885
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
886
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
887 888
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
889
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
890
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
891
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
892 893 894
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
895
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
896
  }
897

D
denglin-github 已提交
898 899 900 901 902 903
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

904 905 906 907 908
  if (config_.gpu_fp16_enabled()) {
    argument_.SetUseGPUFp16(true);
    argument_.SetGpuFp16DisabledOpTypes(config_.gpu_fp16_disabled_op_types_);
  }

石晓伟 已提交
909
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
910 911
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
912 913 914
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
915 916 917
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
918 919 920 921 922
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
923
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
944 945 946
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

947
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
948 949
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
950
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
951 952
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
953 954 955 956 957 958
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
#endif
J
jianghaicheng 已提交
959

960 961 962
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

963
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
964
    LOG(INFO) << "MKLDNN is enabled";
965 966 967
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

968 969 970 971 972 973 974 975
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
976 977 978 979
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
980 981
#endif

982
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
983 984 985 986
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
987
  argument_.SetDisableLogs(config_.glog_info_disabled());
988
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
989
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
990
  argument_.SetScopeNotOwned(scope_.get());
991 992 993 994 995
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
996 997
  Analyzer().Run(&argument_);

998
  PADDLE_ENFORCE_EQ(
999 1000
      argument_.scope_valid(),
      true,
1001
      platform::errors::InvalidArgument("The argument scope should be valid."));
1002 1003
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1004
  inference_program_.reset(
1005 1006 1007 1008 1009
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
                BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
            int engine_predictor_id =
                BOOST_GET_CONST(int, op_desc->GetAttr("predictor_id"));
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1028 1029 1030
#endif
        delete prog;
      });
1031 1032 1033 1034
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1035
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1036
}
1037 1038

template <>
1039 1040 1041
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1042 1043
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1044 1045 1046 1047
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1048
  VLOG(3) << "create AnalysisConfig";
1049
  PADDLE_ENFORCE_EQ(
1050 1051
      config.is_valid(),
      true,
1052 1053
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1054

1055 1056 1057 1058
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1059
                 []() { inference::RegisterAllCustomOperator(); });
1060

1061
  if (config.use_gpu()) {
1062 1063 1064 1065 1066 1067
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
1068 1069
          config.memory_pool_init_size_mb(),
          0.f,
1070 1071 1072
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
1073 1074
          config.gpu_device_id(),
          0,
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1088

1089 1090 1091 1092 1093 1094 1095
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1096 1097 1098 1099 1100 1101 1102 1103 1104
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1105 1106 1107 1108 1109 1110
      // TODO(Jingzhuangzhuang): Fix trt error when allocator_strategy is
      // auto_growth
      if (config.tensorrt_engine_enabled()) {
        gflags.push_back("--allocator_strategy=naive_best_fit");
      }

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1126 1127 1128 1129 1130 1131
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1132 1133 1134 1135
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1136 1137
  // Each config can only be used for one predictor.
  config.SetInValid();
1138 1139
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1140 1141 1142 1143
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1144 1145 1146 1147 1148
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1149 1150
    return nullptr;
  }
1151

G
Gabor Buella 已提交
1152
  return predictor;
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1167
void AnalysisPredictor::PrepareFeedFetch() {
1168 1169 1170
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1171
  CreateFeedFetchVar(sub_scope_);
1172 1173
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
1174
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
1175 1176 1177 1178 1179
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1180
      idx2feeds_[idx] = op->Output("Out")[0];
1181
    } else if (op->Type() == "fetch") {
1182
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1183 1184
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1185
      }
Y
Yan Chunwei 已提交
1186
      fetches_[idx] = op;
N
nhzlx 已提交
1187
      idx2fetches_[idx] = op->Input("X")[0];
1188 1189 1190 1191
    }
  }
}

1192
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
1193 1194 1195
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1196
  auto *var = scope->Var("feed");
1197
  var->GetMutable<framework::FeedList>();
1198
  var = scope->Var("fetch");
1199
  var->GetMutable<framework::FetchList>();
1200 1201
}

N
nhzlx 已提交
1202 1203 1204 1205 1206 1207 1208 1209
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1210 1211 1212 1213 1214 1215
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
1216 1217 1218
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1219 1220 1221 1222 1223
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
1224 1225 1226 1227 1228 1229 1230 1231
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1232 1233
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1234
  framework::Scope *scope;
1235
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1236 1237 1238 1239 1240 1241 1242 1243
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1244
  PADDLE_ENFORCE_NOT_NULL(
1245
      scope->FindVar(name),
1246
      platform::errors::PreconditionNotMet(
1247
          "The variable named %s is not found in the scope of the executor.",
1248
          name));
1249
  std::unique_ptr<ZeroCopyTensor> res(
1250
      new ZeroCopyTensor(static_cast<void *>(scope)));
1251 1252
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1253 1254
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1255 1256 1257 1258
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1259
  } else if (platform::is_xpu_place(place_)) {
1260 1261 1262 1263 1264 1265 1266 1267
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1268
      auto xpu_place = place_;
1269 1270
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1271
  } else if (platform::is_npu_place(place_)) {
1272
    auto npu_place = place_;
W
Wilber 已提交
1273
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
1274
  } else {
1275
    auto gpu_place = place_;
N
nhzlx 已提交
1276 1277
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1278 1279 1280 1281 1282
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1283
  framework::Scope *scope;
1284
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1285 1286 1287 1288 1289 1290 1291 1292
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1293
  PADDLE_ENFORCE_NOT_NULL(
1294
      scope->FindVar(name),
1295
      platform::errors::PreconditionNotMet(
1296
          "The variable named %s is not found in the scope of the executor.",
1297
          name));
1298
  std::unique_ptr<ZeroCopyTensor> res(
1299
      new ZeroCopyTensor(static_cast<void *>(scope)));
1300 1301
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1302 1303
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1304 1305 1306 1307
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1308
  } else if (platform::is_xpu_place(place_)) {
1309 1310 1311 1312 1313 1314 1315 1316
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1317
      auto xpu_place = place_;
1318 1319
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1320
  } else if (platform::is_npu_place(place_)) {
1321
    auto npu_place = place_;
W
Wilber 已提交
1322
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
1323
  } else {
1324
    auto gpu_place = place_;
N
nhzlx 已提交
1325 1326
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1327 1328 1329 1330
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1331
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1342
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1354
  executor_->Run();
1355 1356 1357 1358 1359

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1360
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1361
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1362
  tensor_array_batch_cleaner_.ResetTensorArray();
1363 1364 1365 1366

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
1367 1368 1369
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1370
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1371 1372 1373 1374 1375
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1376 1377 1378
  return true;
}

W
Wilber 已提交
1379 1380 1381 1382 1383
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
  if (stream != nullptr) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1384
    auto gpu_place = place_;
W
Wilber 已提交
1385 1386 1387 1388 1389 1390 1391 1392
    auto *dev_ctx = reinterpret_cast<paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    dev_ctx->SetThreadLocalStream(stream);
  }
  return ZeroCopyRun();
}
#endif

1393 1394 1395 1396 1397 1398
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1399
    auto gpu_place = place_;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
1439 1440
          counter.begin(),
          counter.end(),
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

1462 1463
  inference::SerializeShapeRangeInfo(
      config_.shape_range_info_path(), min_shapes, max_shapes, opt_shapes);
1464 1465
}

1466 1467
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1468
  std::string filename;
1469 1470
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1471
  } else if (!config_.prog_file().empty()) {
1472 1473 1474
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1475
    filename = config_.prog_file();
1476
  } else {
1477
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1478 1479 1480 1481
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1482
    LOG(ERROR) << string::Sprintf(
1483 1484
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1485
        config_.params_file());
1486 1487
    return false;
  }
1488 1489 1490

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1491
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1492 1493 1494
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1495
    PADDLE_ENFORCE_EQ(
1496 1497
        static_cast<bool>(fin.is_open()),
        true,
1498 1499 1500
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1501 1502 1503 1504 1505 1506 1507 1508
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1509
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1510
  }
1511 1512 1513 1514 1515 1516
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1517 1518
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1540
      if (!config_.params_file().empty()) {
1541 1542 1543 1544 1545 1546
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1547
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1548 1549 1550 1551 1552
        op->CheckAttrs();
      }
    }
  }

1553
  if (!config_.params_file().empty()) {
1554 1555 1556 1557 1558 1559
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1560
    op->SetAttr("file_path", {config_.params_file()});
1561 1562 1563 1564
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1565
  framework::NaiveExecutor e(place_);
1566 1567 1568 1569
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1570 1571
  return true;
}
1572

1573 1574 1575 1576 1577
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1597
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1598
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1599 1600
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
1601 1602
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1603 1604 1605
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1606 1607
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1608
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1609 1610 1611 1612
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1613 1614
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1615
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1616
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1617 1618
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1619 1620 1621
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1622

N
nhzlx 已提交
1623
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1624 1625 1626
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1627

N
nhzlx 已提交
1628 1629 1630 1631 1632
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1633
      std::string calibration_table_data_path =
N
nhzlx 已提交
1634 1635 1636 1637
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1638 1639 1640 1641 1642

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1643 1644 1645 1646
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1647
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1648 1649
  return true;
}
N
nhzlx 已提交
1650
#endif
N
nhzlx 已提交
1651

1652
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1653
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1654
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1655 1656
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1657 1658
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1659
#endif
1660
  if (config_.with_profile_) {
1661 1662 1663 1664 1665 1666
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1667

1668 1669 1670 1671 1672 1673
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1674

1675 1676 1677 1678
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }

1679
  memory::Release(place_);
1680 1681
}

1682
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1683
  std::lock_guard<std::mutex> lk(clone_mutex_);
1684 1685
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
1686
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
1687 1688 1689
  return std::unique_ptr<PaddlePredictor>(x);
}

1690
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1691 1692 1693
  return inference_program_->Proto()->SerializeAsString();
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1733
template <>
1734 1735
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1736
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1737 1738
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1739 1740
}

1741
}  // namespace paddle
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1752 1753
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1754
USE_TRT_CONVERTER(flatten_contiguous_range);
1755
USE_TRT_CONVERTER(matmul);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1767 1768
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1769
USE_TRT_CONVERTER(split);
1770 1771
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1772
USE_TRT_CONVERTER(leaky_relu);
1773 1774
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1775
USE_TRT_CONVERTER(group_norm);
1776
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1777 1778 1779
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1780 1781
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1782
USE_TRT_CONVERTER(slice);
1783
USE_TRT_CONVERTER(scale);
1784
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1785
USE_TRT_CONVERTER(clip);
1786
USE_TRT_CONVERTER(gather);
1787
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1788
USE_TRT_CONVERTER(yolo_box);
1789
USE_TRT_CONVERTER(roi_align);
1790
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1791
USE_TRT_CONVERTER(multiclass_nms);
1792
USE_TRT_CONVERTER(multiclass_nms3);
1793
USE_TRT_CONVERTER(nearest_interp);
1794
USE_TRT_CONVERTER(nearest_interp_v2);
C
ccrrong 已提交
1795
USE_TRT_CONVERTER(bilinear_interp_v2);
1796
USE_TRT_CONVERTER(cast);
W
Wangzheee 已提交
1797
USE_TRT_CONVERTER(reshape);
1798 1799
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
1800
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
1801
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
1802 1803
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
1804
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
1805
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
1806
USE_TRT_CONVERTER(pool3d)
1807 1808
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
F
feng_shuai 已提交
1809
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
1810
USE_TRT_CONVERTER(strided_slice)
1811
#endif
W
Wilber 已提交
1812 1813 1814 1815 1816 1817

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
1828 1829 1830 1831
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
1832 1833 1834 1835 1836 1837 1838 1839 1840
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
1841 1842 1843 1844
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
1845 1846 1847 1848 1849 1850 1851
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1852
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1853 1854 1855 1856 1857 1858 1859
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1860
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1875 1876
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
1926 1927
      size,
      1UL,
W
Wilber 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
1946 1947
      idx,
      preds_.size() + 1,
W
Wilber 已提交
1948
      paddle::platform::errors::InvalidArgument(
1949 1950
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
1951 1952 1953 1954 1955 1956 1957
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
1978 1979 1980 1981 1982 1983
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
1984
}  // namespace experimental
W
Wilber 已提交
1985
}  // namespace paddle_infer