op_gen.py 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import logging
17 18 19
import os

import yaml
20
from op_build_gen import gen_build_func_str
21 22 23
from op_interface_gen import (
    gen_exclusive_interface_str,
    gen_op_infer_meta_str,
C
Chen Zhiyang 已提交
24
    gen_op_vjp_str,
25
)
26
from op_member_func_gen import gen_op_get_inputs_outputs_str
27
from op_verify_gen import gen_verify_func_str
28 29 30 31
from vjp_interface_gen_op_list import (
    vjp_interface_declare_gen_op_list,
    vjp_interface_implementation_gen_op_list,
)
32 33 34 35 36 37 38 39 40 41 42 43

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
44
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
45

46 47
#include <vector>

48 49
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
50
#include "paddle/ir/core/op_base.h"
51 52 53 54 55 56
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/utils.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/op_yaml_info_util.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/op_yaml_info.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/infermeta.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/trait/inplace.h"
H
hong 已提交
57 58
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
59
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h"
H
hong 已提交
60

61
{input}
62 63

{declare_type_id}
64 65 66 67 68 69
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

70 71 72 73
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

74 75 76 77 78 79 80
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
81
  static OpInfoTuple GetOpInfo();
82
  static void Build({build_args});
83
  {build_mutable_attr_is_input}
84
  {build_attr_num_over_1}
85
  void Verify();
86
{get_inputs_and_outputs}
H
hong 已提交
87
{exclusive_interface}
88 89 90 91 92 93 94 95 96 97 98 99
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
100
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
101
#include "{h_file}"
102 103
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_type.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
Z
zhangbo9674 已提交
104
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_meta_tensor.h"
105 106
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
107
#include "paddle/ir/core/builtin_op.h"
108
#include "paddle/ir/core/ir_context.h"
109
#include "paddle/phi/core/enforce.h"
110 111 112 113 114 115 116
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
Z
zhangbo9674 已提交
117
#include "paddle/phi/infermeta/fusion.h"
118
#include "paddle/phi/api/lib/utils/allocator.h"
119 120
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/ir/core/op_base.h"
121

122
{input}
123 124

{define_type_id}
125
"""
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
# =====================================
# String Template for pd_op_vjp.cc file code gen
# =====================================
VJP_CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_op.h"
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/fluid/primitive/type/lazy_tensor.h"
#include "paddle/ir/core/builtin_op.h"
#include "paddle/ir/core/op_base.h"
#include "paddle/phi/common/int_array.h"

namespace paddle {{
namespace dialect {{
{input}
}}  // namespace dialect
}}  // namespace paddle
"""
144 145 146 147 148

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

149
# get op info
150 151
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
152 153 154
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
155
  paddle::dialect::OpRunTimeInfo run_time_info = paddle::dialect::OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{{kernel_key_dtype}}}, {{{kernel_key_backend}}}, {{{inplace}}}, {{{view}}});
156
  return std::make_tuple(inputs, attributes, outputs, run_time_info, "{origin_op_name}");
157 158
}}
"""
159 160 161
CONSTRUCT_INPUT_INFO_TEMPLATE = """paddle::dialect::OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
CONSTRUCT_OUTPUT_INFO_TEMPLATE = """paddle::dialect::OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = """paddle::dialect::OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
162

163

164 165 166 167
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

168 169 170 171 172 173 174 175
scalar_type_maps = {
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}

176
_NO_NEED_GEN_OPS = {'add_n', 'add_n_', 'add_n_with_kernel', 'split_grad'}
177

178

179 180 181 182 183 184 185 186 187 188 189 190
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


191 192 193 194 195 196 197 198
def to_phi_and_fluid_grad_op_name(op_item):
    # Templat: sum_grad (reduce_sum_grad), sum_double_grad
    rtn = []
    all_names = op_item.split(', ')
    for name in all_names:
        backward_phi_name, backward_fluid_name = to_phi_and_fluid_op_name(name)
        rtn.append([backward_phi_name, backward_fluid_name])
    return rtn
199 200


201
# =====================================
202 203 204 205 206 207 208 209 210 211
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
212 213 214 215
            forward_phi_name, forward_fluid_name = to_phi_and_fluid_op_name(
                compat['op']
            )
            if op_name == forward_phi_name:
216
                return compat
217 218 219 220 221
            elif 'backward' in compat.keys():
                bkw_names = to_phi_and_fluid_grad_op_name(compat['backward'])
                for name in bkw_names:
                    if op_name == name[0]:
                        return compat
222 223 224 225 226
        return None


# =====================================
# Parse Op Information From Yaml
227 228
# =====================================
class OpInfoParser:
229
    def __init__(self, op_yaml_item, op_compat_item):
230
        self.op_yaml_item = op_yaml_item
231
        self.op_compat_item = op_compat_item
232
        self.op_phi_name = self.parse_op_phi_name()
233
        # parse inputs
234 235 236
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
237
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
238 239 240
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
241

242
        # parse outputs
243 244
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
245
        self.output_size_list = self.parse_output_size_list()
246
        self.output_optional_list = self.parse_output_optional_list()
247
        self.output_intermediate_list = self.parse_output_intermediate_list()
248 249 250 251 252
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
253

254
        # parse attributes
255 256 257
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
258 259
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
260 261
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
262 263
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
264
                'const std::vector<Scalar>&',
265
            ],
Z
zhangbo9674 已提交
266 267 268
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
269 270 271 272 273
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
274
                'const std::vector<float>&',
275 276 277 278 279
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
W
WangZhen 已提交
280
                'const std::vector<bool>&',
281
            ],
Y
YuanRisheng 已提交
282
            'str': ['ir::StrAttribute', 'const std::string&'],
283 284
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
285
                'const std::vector<std::string>&',
286
            ],
Y
YuanRisheng 已提交
287
            'Place': ['paddle::dialect::PlaceAttribute', 'const Place&'],
288 289 290 291 292 293
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
294
                'ir::ArrayAttribute<ir::Int64Attribute>',
295
                'const std::vector<int64_t>&',
296 297
            ],
            'int[]': [
Z
zhangbo9674 已提交
298
                'ir::ArrayAttribute<ir::Int32Attribute>',
299
                'const std::vector<int>&',
300 301
            ],
        }
302 303
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
304 305 306
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
C
Chen Zhiyang 已提交
307 308 309
        self.attribute_gen_arg_type_list = (
            self.parse_attribute_gen_arg_type_list()
        )
310
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
311 312 313
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
314 315
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

316 317 318 319 320 321
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

322 323 324 325 326 327 328 329
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

330 331 332
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
333
        if 'infer_meta' in self.op_yaml_item:
334
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
335
        else:
336
            self.infer_meta_func = None
H
hong 已提交
337

338 339 340
        # parse backward name
        self.backward_name = self.parse_backward_name()

341 342 343 344
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

345 346 347
        # parse has_custom_verify
        self.custom_verify = self.parse_custom_verify()

348 349 350 351 352 353 354 355 356
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

357 358 359 360 361
    def parse_custom_verify(self):
        if 'custom_verify' in self.op_yaml_item:
            return self.op_yaml_item['custom_verify']
        return False

362
    def parse_op_phi_name(self):
363 364 365
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

381 382 383 384 385
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

386 387 388 389 390 391 392 393 394 395 396 397 398
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
399 400
                        scalar_attr == "depth"
                        and self.op_phi_name[0] == "one_hot"
401
                    ):
402
                        mutable_attribute_name_list.append("num_classes")
403
                    else:
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                        mutable_attribute_name_list.append(scalar_attr)
                    data_type = self.op_compat_item['scalar'][scalar_attr][
                        'data_type'
                    ]
                    # patch for isclose and allclose
                    if (self.op_compat_item['op'] == "isclose") or (
                        self.op_compat_item['op'] == "allclose"
                    ):
                        data_type = "float"
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            data_type,
                        ]
                    )
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )
        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
516 517 518 519
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
520 521
        return optional_list

522 523 524 525 526 527 528 529 530
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

531 532 533 534 535 536 537 538 539 540
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
541
            'SelectedRows': 'paddle::dialect::SelectedRowsType',
542 543 544 545 546 547 548 549 550
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

551 552 553 554 555 556 557 558 559
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

560 561 562 563
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
564 565 566 567
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
568
            else:
569
                optional_list.append("false")
570 571
        return optional_list

572 573 574 575 576 577 578 579 580 581 582 583
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

584 585 586 587 588 589
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

590 591 592 593 594 595 596 597 598 599 600 601
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
602 603 604 605 606 607 608 609 610 611 612 613 614
                op_name = self.op_yaml_item['name']
                attr_name = attribute_info['name']
                if (
                    op_name not in ["isclose", "allclose"]
                    and self.op_compat_item is not None
                    and 'scalar' in self.op_compat_item.keys()
                    and attr_name in self.op_compat_item['scalar'].keys()
                    and 'data_type'
                    in self.op_compat_item['scalar'][attr_name].keys()
                ):
                    temp_type = self.op_compat_item['scalar'][attr_name][
                        'data_type'
                    ]
615 616
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
Y
YuanRisheng 已提交
617
                    temp_type = "const " + attribute_info['data_type'] + "&"
618 619 620
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

C
Chen Zhiyang 已提交
621 622 623 624 625 626 627 628 629 630 631
    def parse_attribute_gen_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            temp_type = self.attr_types_map[attribute_info['typename']][1]
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

632 633 634 635
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
636
                attribute_info['typename'] in self.attr_types_map
637
            ), f"{self.op_phi_name} : Attr type error."
638
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
639 640
        return type_list

641 642 643 644 645 646 647 648 649
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

650 651 652 653 654 655 656 657
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
658
            else:
659 660
                default_value_list.append(None)
        return default_value_list
661

662 663 664 665 666 667 668 669 670 671 672 673
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

674 675 676 677 678 679
    def parse_backward_name(self):
        if 'backward' in self.op_yaml_item:
            return self.op_yaml_item['backward']
        else:
            return None

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
698 699 700 701 702 703 704 705 706 707 708 709


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


def OpGenerator(
    op_yaml_files,
710
    op_compat_yaml_file,
711 712 713 714
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
715
    op_vjp_cc_file,
716 717 718 719 720 721 722 723
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
724 725
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

726 727 728 729 730
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
731
    op_info_items = {}
732
    for op in op_yaml_items:
733 734
        op_info_items[op['name']] = OpInfoParser(
            op, op_compat_parser.get_compat(op['name'])
735
        )
736 737 738 739
    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
740
    ops_vjp_defined_list = []  # all op vjp static interface defination
741
    for key, op_info in op_info_items.items():
742
        # get op inputs info
743 744 745
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
746
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
747
        # get op outputs info
748 749
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
750
        op_output_size_list = op_info.output_size_list
751
        op_output_optional_list = op_info.output_optional_list
752
        op_output_intermediate_list = op_info.output_intermediate_list
753 754 755 756
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
757 758
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
759
        op_attribute_data_type_list = op_info.attribute_data_type_list
760 761
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

778
        # others
779 780
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
781 782
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
783
        op_interfaces = ["paddle::dialect::OpYamlInfoInterface"]
784 785
        op_traits = []

786
        if op_info.infer_meta_func:
787
            op_interfaces += ["paddle::dialect::InferMetaInterface"]
788

789 790
        if (
            op_info.backward_name
791
            and op_info.op_phi_name[0] in vjp_interface_declare_gen_op_list
792
        ):
793
            op_interfaces += ["paddle::dialect::VjpInterface"]
794
        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
795

796 797
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
798 799
            if op_name in _NO_NEED_GEN_OPS:
                continue
800 801 802
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

803 804 805
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
806 807 808
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
809 810

            if op_name[-1] == "_":
811
                op_traits += ["paddle::dialect::InplaceTrait"]
812

813 814 815 816
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

817 818 819
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
820 821 822 823 824
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
825

826 827 828 829 830 831
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
832 833
            build_attr_num_over_1 = ""
            build_func_with_attr_is_map = ""
834 835
            build_func_with_muta_attr_is_input = ""

836
            if op_infer_meta_map is not None:
837 838 839
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
840
                ) = gen_build_func_str(
841
                    op_class_name,
842
                    op_input_name_list,
843 844
                    op_input_type_list,
                    op_attribute_name_list,
845
                    op_attribute_type_list,
846 847
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
848
                    op_mutable_attribute_name_list,
849
                    op_mutable_attribute_type_list,
850
                    op_non_mutable_attribute_name_list,
851
                    op_non_mutable_attribute_type_list,
852 853
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
854 855 856 857
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
858
                    muta_attr_is_input=False,
859
                )
Z
zhangbo9674 已提交
860
                if len(op_attribute_name_list) > 0:
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                    (
                        build_args_with_attr_is_map_for_declare,
                        build_func_with_attr_is_map,
                    ) = gen_build_func_str(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_type_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=False,
                        attr_args_is_map=True,
                    )
                    build_attr_num_over_1 = (
                        "static void Build({build_args});".format(
                            build_args=build_args_with_attr_is_map_for_declare
                        )
                    )

891
                if len(op_mutable_attribute_name_list) > 0:
892 893 894
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
895
                    ) = gen_build_func_str(
896 897 898 899
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
900
                        op_attribute_type_list,
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
919

920
            # gen op_declare_str/op_defined_str
921
            if len(op_non_mutable_attribute_name_list) == 0:
922 923 924 925 926 927 928
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
929 930
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
931
                    build_attr_num_over_1=build_attr_num_over_1,
932
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
933
                    exclusive_interface=exclusive_interface_str,
934 935 936 937 938 939 940 941 942
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
943
                        attribute_num=len(op_non_mutable_attribute_name_list)
944
                    ),
945
                    attribute_num=len(op_non_mutable_attribute_name_list),
946 947
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
948
                    build_attr_num_over_1=build_attr_num_over_1,
949
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
950
                    exclusive_interface=exclusive_interface_str,
951 952
                )
                attribute_names_str = (
953
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
954 955 956
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
957
                    attribute_num=len(op_non_mutable_attribute_name_list),
958 959
                    attribute_names=attribute_names_str,
                )
960

961 962 963
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
964
            # generate get op info funciton: inputs
965
            input_info_list = []
966 967 968 969 970 971 972 973
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
974
                    )
975 976 977 978 979 980 981 982 983
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
984
                    )
985 986 987 988 989
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
990 991 992 993 994 995 996 997 998 999 1000 1001
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1002
                    )
1003 1004 1005
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1006
            if len(op_non_mutable_attribute_name_list) > 0:
1007
                attribute_info_list = []
1008
                for idx in range(len(op_non_mutable_attribute_name_list)):
1009 1010
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1011 1012 1013 1014 1015
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1016
                        )
1017
                    )
1018
                attribute_info_str = ", ".join(attribute_info_list)
1019 1020 1021 1022 1023 1024
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1025

1026 1027
            kernel_func_str = ""
            kernel_param_str = ""
1028
            kernel_key_dtype = ""
1029
            kernel_key_backend = ""
1030 1031 1032
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1033 1034 1035 1036
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1037 1038
                    if kernel_key_dtype != "":
                        kernel_key_dtype = '"' + kernel_key_dtype + '"'
1039 1040 1041 1042 1043 1044
                if 'backend' in op_kernel_map and op_kernel_map['backend']:
                    kernel_key_backend = '", "'.join(
                        op_kernel_map['backend']['candidates']
                    )
                    if kernel_key_backend != "":
                        kernel_key_backend = '"' + kernel_key_backend + '"'
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1058 1059 1060 1061 1062
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1063 1064 1065 1066
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1067
                kernel_key_dtype=kernel_key_dtype,
1068
                kernel_key_backend=kernel_key_backend,
1069 1070
                inplace=inplace_str,
                view=view_str,
1071
                origin_op_name=op_info.op_yaml_item['name'],
1072
            )
1073

1074
            # generate op verify function str
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            op_verify_str = ''
            if not op_info.custom_verify:
                op_verify_str = gen_verify_func_str(
                    op_class_name,
                    op_input_type_list,
                    op_input_optional_list,
                    op_mutable_attribute_name_list,
                    op_mutable_attribute_type_list,
                    op_non_mutable_attribute_name_list,
                    op_non_mutable_attribute_type_list,
                    op_output_type_list,
                    op_output_optional_list,
                )
1088

1089
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
1090

1091 1092 1093 1094 1095 1096
            # =================================== #
            #         gen Vjp func str      #
            # =================================== #

            # generate op vjp function str

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            op_vjp_str = ''
            if dialect_name == "cinn":
                logging.warning("cinn is currently not support Vjp function")
            else:
                # TODO(chenzhiyang) add vjp gen code
                if (
                    op_info.backward_name
                    and op_info.op_phi_name[0]
                    in vjp_interface_implementation_gen_op_list
                ):
                    op_vjp_str = gen_op_vjp_str(
                        op_class_name,
                        op_info.backward_name,
                        op_name,
                        op_info_items[op_info.op_phi_name[0]],
                        op_info_items[op_info.backward_name],
                    )
1114

1115 1116 1117 1118
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1119
            ops_defined_list.append(build_func_with_muta_attr_not_input)
1120
            ops_defined_list.append(build_func_with_attr_is_map)
1121 1122
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1123
            ops_defined_list.append(op_verify_str)
1124
            ops_defined_list.append(op_infer_meta_str)
1125 1126
            # NOTE(chenxi67)skip if dialect_name==cinn
            if dialect_name == "cinn":
1127
                pass
1128
            else:
1129
                ops_vjp_defined_list.append(op_vjp_str)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1141 1142 1143 1144 1145

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1146 1147 1148 1149 1150 1151 1152
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1153 1154 1155
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1156 1157 1158 1159 1160 1161 1162 1163
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1164 1165 1166 1167 1168

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1169
    source_file_str = CC_FILE_TEMPLATE.format(
1170 1171 1172
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1173 1174
    )  # Add head

1175 1176 1177
    vjp_source_file_str = VJP_CC_FILE_TEMPLATE.format(
        input="".join(ops_vjp_defined_list)
    )
1178
    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
1179
    with open(op_def_h_file, 'w') as f:
1180
        f.write(head_file_str)
1181
    with open(op_def_cc_file, 'w') as f:
1182
        f.write(source_file_str)
1183 1184 1185 1186 1187
    # NOTE(Aurelius84): op_gen.py is called multiply times,
    # and vjp is only avaible for pd dialect.
    if dialect_name != 'cinn' and op_vjp_cc_file:
        with open(op_vjp_cc_file, 'w') as f:
            f.write(vjp_source_file_str)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
1203
    parser.add_argument('--op_vjp_cc_file', type=str)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file
1221
    op_vjp_cc_file = args.op_vjp_cc_file
1222 1223 1224 1225

    # auto code generate
    OpGenerator(
        op_yaml_files,
1226
        op_compat_yaml_file,
1227 1228 1229 1230
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
1231
        op_vjp_cc_file,
1232
    )