op_gen.py 62.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml
19 20
from op_interface_gen import gen_exclusive_interface_str, gen_op_infer_meta_str
from op_member_func_gen import gen_op_get_inputs_outputs_str
21
from op_verify_gen import gen_verify_func_str
22 23 24 25 26 27 28 29 30 31 32 33

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
34
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
35

36 37
#include <vector>

38 39
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
40
#include "paddle/ir/core/op_base.h"
41
#include "paddle/fluid/ir/dialect/utils.h"
42
#include "paddle/fluid/ir/dialect/op_yaml_info_util.h"
43
#include "paddle/fluid/ir/interface/op_yaml_info.h"
44
#include "paddle/fluid/ir/interface/infermeta.h"
H
hong 已提交
45 46 47
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

48
{input}
49 50

{declare_type_id}
51 52 53 54 55 56
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

57 58 59 60
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

61 62 63 64 65 66 67
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
68
  static OpInfoTuple GetOpInfo();
69
  static void Build({build_args});
70
  {build_mutable_attr_is_input}
71
  void Verify();
72
{get_inputs_and_outputs}
H
hong 已提交
73
{exclusive_interface}
74 75 76 77 78 79 80 81 82 83 84 85
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
86
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
87

88
#include "paddle/fluid/ir/dialect/pd_op.h"
89 90
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
91 92
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
93
#include "paddle/ir/core/builtin_op.h"
94
#include "paddle/ir/core/ir_context.h"
95
#include "paddle/phi/core/enforce.h"
96 97 98 99 100 101 102
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
103
#include "paddle/phi/api/lib/utils/allocator.h"
104

105
{input}
106 107

{define_type_id}
108 109 110 111 112 113
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

114
# get op info
115 116
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
117 118 119
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
120 121
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{"{kernel_key_dtype}"}}, {{{inplace}}}, {{{view}}});

122
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
123 124
}}
"""
125
CONSTRUCT_INPUT_INFO_TEMPLATE = """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
126 127 128 129 130 131 132
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

133 134
# build
OP_BUILD_TEMPLATE = """
135
void {op_name}::Build({build_args}) {{
136
{build_mutable_attributes}
137 138 139 140 141
{build_inputs}
{build_attributes}
{build_outputs}
}}
"""
142

143 144 145 146
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

147

148 149 150 151 152 153 154 155 156 157 158 159
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


160
scalar_type_maps = {
Z
zhangbo9674 已提交
161 162
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
163 164 165 166 167 168
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}


169
# =====================================
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
188 189
# =====================================
class OpInfoParser:
190
    def __init__(self, op_yaml_item, op_compat_item):
191
        self.op_yaml_item = op_yaml_item
192
        self.op_compat_item = op_compat_item
193
        self.op_phi_name = self.parse_op_phi_name()
194
        # parse inputs
195 196 197
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
198
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
199 200 201
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
202

203
        # parse outputs
204 205
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
206
        self.output_size_list = self.parse_output_size_list()
207
        self.output_optional_list = self.parse_output_optional_list()
208
        self.output_intermediate_list = self.parse_output_intermediate_list()
209 210 211 212 213
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
214

215
        # parse attributes
216 217 218
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
219 220
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
221 222
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
223 224
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
225
                'const std::vector<Scalar>&',
226
            ],
Z
zhangbo9674 已提交
227 228 229
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
230 231 232 233 234
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
235
                'const std::vector<float>&',
236 237 238 239 240
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
241
                'const std::vecot<bool>&',
242 243 244 245
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
246
                'const std::vector<std::string>&',
247 248 249 250 251 252 253 254
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
255
                'ir::ArrayAttribute<ir::Int64Attribute>',
256
                'const std::vector<int64_t>&',
257 258
            ],
            'int[]': [
Z
zhangbo9674 已提交
259
                'ir::ArrayAttribute<ir::Int32Attribute>',
260
                'const std::vector<int>&',
261 262
            ],
        }
263 264
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
265 266 267
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
268
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
269 270 271
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
272 273
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

274 275 276 277 278 279
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

280 281 282 283 284 285 286 287
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

288 289 290
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
291
        if 'infer_meta' in self.op_yaml_item:
292
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
293
        else:
294
            self.infer_meta_func = None
H
hong 已提交
295

296 297 298 299
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

300 301 302 303 304 305 306 307 308
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

309
    def parse_op_phi_name(self):
310 311 312
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

328 329 330 331 332
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
                        self.op_compat_item['scalar'][scalar_attr]['data_type']
                        == "std::string"
                    ):
                        # see isclose and allclose in op_compat.yaml
                        mutable_attribute_name_list.append(scalar_attr)
                        mutable_attribute_type_list.append(
                            ["ir::StrAttribute", "std::string"]
                        )
                    else:
355 356 357 358 359 360 361
                        if (
                            scalar_attr == "depth"
                            and self.op_phi_name[0] == "one_hot"
                        ):
                            mutable_attribute_name_list.append("num_classes")
                        else:
                            mutable_attribute_name_list.append(scalar_attr)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
                        mutable_attribute_type_list.append(
                            [
                                "paddle::dialect::ScalarAttribute",
                                self.op_compat_item['scalar'][scalar_attr][
                                    'data_type'
                                ],
                            ]
                        )
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )

        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
468 469 470 471
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
472 473
        return optional_list

474 475 476 477 478 479 480 481 482
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

502 503 504 505 506 507 508 509 510
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

511 512 513 514
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
515 516 517 518
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
519
            else:
520
                optional_list.append("false")
521 522
        return optional_list

523 524 525 526 527 528 529 530 531 532 533 534
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

535 536 537 538 539 540
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

559 560 561 562
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
563
                attribute_info['typename'] in self.attr_types_map
564
            ), f"{self.op_phi_name} : Attr type error."
565
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
566 567
        return type_list

568 569 570 571 572 573 574 575 576
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

577 578 579 580 581 582 583 584
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
585
            else:
586 587
                default_value_list.append(None)
        return default_value_list
588

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
619 620 621 622 623 624 625 626 627 628 629


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
630
# Generate Op Definition Files
631
# =====================================
632 633
def GenBuildInputArgsStr(
    op_input_name_list,
634 635 636
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
637 638 639 640
    op_mutable_attribute_name_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
641
    for_func_define=True,
642
    mutable_attr_is_input=False,
643 644
):
    '''
645
    Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={}
646
    '''
647
    # add inputs
648
    build_args_str = "ir::Builder &builder, ir::OperationArgument &argument"
649 650 651
    if len(op_input_name_list) > 0:
        for input_name in op_input_name_list:
            build_args_str += ", ir::OpResult " + input_name + "_"
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

    if not mutable_attr_is_input:
        # add attributes
        for attr_idx in range(len(op_attribute_name_list)):
            build_args_str += (
                ", "
                + op_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_attribute_name_list[attr_idx]
            )
            if for_func_define:
                if op_attribute_default_value_list[attr_idx] is not None:
                    default_value = op_attribute_default_value_list[attr_idx]
                    if (
                        op_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value
    else:
        # add mutable attributes as inputs
        if len(op_mutable_attribute_name_list) > 0:
            for mutable_attr in op_mutable_attribute_name_list:
                build_args_str += ", ir::OpResult " + mutable_attr + "_"

        # add non-mutable attributes
        for attr_idx in range(len(op_non_mutable_attribute_name_list)):
            build_args_str += (
                ", "
                + op_non_mutable_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_non_mutable_attribute_name_list[attr_idx]
            )
            if for_func_define:
689
                if (
690 691
                    op_non_mutable_attribute_default_value_list[attr_idx]
                    is not None
692
                ):
693 694 695 696 697 698 699 700 701 702 703 704 705
                    default_value = op_non_mutable_attribute_default_value_list[
                        attr_idx
                    ]
                    if (
                        op_non_mutable_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value

706 707 708
    return build_args_str


709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
mutable_attribute_phi_type_maps = {
    'int': 'phi::DataType::INT32',
    'int64_t': 'phi::DataType::INT64',
    'float': 'phi::DataType::FLOAT32',
    'std::vector<int64_t>': 'phi::DataType::INT64',
    'const std::vector<int64_t>&': 'phi::DataType::INT64',
}


def GenBuildInserFullForMutableAttribute(
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
):
    build_mutable_attribute = ""
    BUILD_INTARRAY_ATTRIBUTE_TEMPLATE = """  // Generate int_array mutable attribute: {attr_name}
  paddle::dialect::FullIntArrayOp full_{attr_name}_op = builder.Build<paddle::dialect::FullIntArrayOp>({attr_name}, {phi_dtype}, phi::CPUPlace());
727
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
728 729 730
    """
    BUILD_SCALAR_ATTRIBUTE_TEMPLATE = """  // Generate scalar mutable attribute: {attr_name}
  paddle::dialect::FullOp full_{attr_name}_op = builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{{1}}, {attr_name}, {phi_dtype}, phi::CPUPlace());
731
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    """
    for idx in range(len(op_mutable_attribute_name_list)):
        attr_name = op_mutable_attribute_name_list[idx]
        attr_type = op_mutable_attribute_type_list[idx][0]
        if attr_name in op_attribute_name_list:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_attribute_build_arg_type_list[
                    op_attribute_name_list.index(attr_name)
                ]
            ]
        else:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_mutable_attribute_type_list[idx][1]
            ]
        if attr_type == "paddle::dialect::IntArrayAttribute":
            build_mutable_attribute += BUILD_INTARRAY_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
        else:
            build_mutable_attribute += BUILD_SCALAR_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
    return build_mutable_attribute


757
def GenBuildInputs(op_input_name_list, op_mutable_attribute_name_list):
758
    BUILD_INPUT_TEMPLATE = """  std::vector<ir::OpResult> argument_inputs = {{{inputs_args}}};
759
  argument.AddOperands(argument_inputs.begin(), argument_inputs.end());
760
"""
761 762 763 764 765 766
    build_input_str = '  VLOG(4) << "Builder construction inputs";\n'
    input_name_list = op_input_name_list + op_mutable_attribute_name_list
    if len(input_name_list) > 0:
        inputs_args_str = ""
        inputs_args_str += "_, ".join(input_name_list) + "_"
        build_input_str += BUILD_INPUT_TEMPLATE.format(
767 768 769 770 771
            inputs_args=inputs_args_str
        )
    return build_input_str


772 773 774
def GenBuildAttributes(
    op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list
):
775 776
    INTARRAY_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr}));
"""
777
    SCALAR_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = TransToIrAttribute({attr}, ir::IrContext::Instance());
778 779 780 781 782 783 784 785 786 787
"""
    STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr});
"""
    ARRAY_ATTRIBUTE_TEMPLATE = """  std::vector<ir::Attribute> vec_{attr_name};
  for (size_t i = 0; i < static_cast<size_t>({attr_size}); i++) {{
    {create_attribute}
    vec_{attr_name}.push_back(attr_{attr_name});
  }}
  ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name});
"""
788 789 790 791 792 793
    attr_str = '  VLOG(4) << "Builder construction attributes";\n'
    for idx in range(len(op_non_mutable_attribute_name_list)):
        if "ir::ArrayAttribute<" in op_non_mutable_attribute_type_list[idx]:
            inner_attribute_type = op_non_mutable_attribute_type_list[idx][
                19:-1
            ]
794 795
            if inner_attribute_type == "paddle::dialect::IntArrayAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
796 797 798
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
799
                    create_attribute=INTARRAY_STR_TEMPLATE.format(
800
                        attr_name=op_non_mutable_attribute_name_list[idx],
801
                        op_attribute_type=inner_attribute_type,
802
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
803 804 805 806
                    ),
                )
            elif inner_attribute_type == "paddle::dialect::ScalarAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
807 808 809
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
810
                    create_attribute=SCALAR_STR_TEMPLATE.format(
811 812
                        attr_name=op_non_mutable_attribute_name_list[idx],
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
813 814 815 816
                    ),
                )
            else:
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
817 818 819
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
820
                    create_attribute=STR_TEMPLATE.format(
821
                        attr_name=op_non_mutable_attribute_name_list[idx],
822
                        op_attribute_type=inner_attribute_type,
823
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
824 825 826
                    ),
                )
        elif (
827 828
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::IntArrayAttribute"
829 830
        ):
            attr_str += INTARRAY_STR_TEMPLATE.format(
831 832 833
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
834 835
            )

836 837 838 839
        elif (
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::ScalarAttribute"
        ):
840
            attr_str += SCALAR_STR_TEMPLATE.format(
841 842
                attr_name=op_non_mutable_attribute_name_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
843 844 845
            )
        else:
            attr_str += STR_TEMPLATE.format(
846 847 848
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
849
            )
850
        attr_str += """  argument.AddAttribute("{attr_name}", attr_{attr_name});\n""".format(
851
            attr_name=op_non_mutable_attribute_name_list[idx]
852 853 854 855 856 857 858 859
        )

    return attr_str


def GenBuildOutputs(
    op_input_name_list,
    op_input_type_list,
860 861
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
862 863 864 865
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
866
    mutable_attr_is_input=False,
867
):
868
    build_output_str = '  VLOG(4) << "Builder construction outputs";\n'
869 870 871 872 873 874 875 876 877
    CREATE_INPUT_METATENSOR_TEMPLATE = """
  VLOG(4) << "Builder construction  dense_{name}";
  phi::DenseTensor dense_{name}(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()),
                                                     {name}.dims(),
                                                     {name}.data_layout(),
                                                     {name}.lod(),
                                                     {name}.offset()));
  VLOG(4) << "Builder construction  meta_{name}";
878 879
  phi::MetaTensor meta_{name}(&dense_{name});
"""
880
    CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name};
881
  for (size_t i=0; i < static_cast<size_t>({name}.size()); i++) {{
882 883 884 885 886 887 888 889 890
    vec_dense_{name}.push_back(phi::DenseTensor(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                                phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dtype()),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dims(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().data_layout(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().lod(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().offset())));
  }}
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < vec_dense_{name}.size(); i++) {{
891 892
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
893

894 895 896 897 898
  std::vector<const phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
 """
899

900 901
    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE = """  std::vector<int64_t> {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullIntArrayOp>().attributes().at("value").dyn_cast<paddle::dialect::IntArrayAttribute>().data().GetData(); (void){name};\n"""
    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE = """  {dtype} {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullOp>().attributes().at("value").dyn_cast<paddle::dialect::ScalarAttribute>().data().to<{dtype}>(); (void){name};\n"""
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    CREATE_OUTPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}(({output_size}), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
"""
    # Prepar input type
    for idx in range(len(op_input_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_input_type_list[idx]:
            build_output_str += "  ir::VectorType {name} = {name}_.type().dyn_cast<ir::VectorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )
        # is a Tensor
        else:
            build_output_str += "  paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast<paddle::dialect::DenseTensorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    # Prepare mutable attributes
    if mutable_attr_is_input:
        for idx in range(len(op_mutable_attribute_name_list)):
            attr_dtype = op_mutable_attribute_type_list[idx]
            # int_array
            if attr_dtype[0] == "paddle::dialect::IntArrayAttribute":
                build_output_str += (
                    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx]
                    )
                )
            # scalar
            elif attr_dtype[0] == "paddle::dialect::ScalarAttribute":
                build_output_str += (
                    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        dtype=attr_dtype[1],
                    )
                )
            # string
            elif attr_dtype[0] == "ir::StrAttribute":
                build_output_str += ""
            else:
                assert "mutable attribtue type is not right."
        build_output_str += "\n"

955
    # Prepare inputs_meta_tensor & attributes for infer meta
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    infer_meta_args = []
    for idx in range(len(op_infer_meta_map['param'])):
        # is input
        if op_infer_meta_map['param'][idx] in op_input_name_list:
            if (
                "meta_" + op_infer_meta_map['param'][idx]
            ) not in infer_meta_args:
                # is a vector<Tensor>
                if (
                    'ir::VectorType'
                    in op_input_type_list[
                        op_input_name_list.index(
                            op_infer_meta_map['param'][idx]
                        )
                    ]
                ):
                    build_output_str += (
                        CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format(
                            name=op_infer_meta_map['param'][idx]
                        )
                    )
                # is a Tensor
                else:
                    build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format(
                        name=op_infer_meta_map['param'][idx]
                    )

            infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx])
        # is attribute
        else:
            infer_meta_args.append(op_infer_meta_map['param'][idx])

988
    # Prepare outputs_meta_tensor for infer meta
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
            infer_meta_args.append(f"meta_{op_output_name_list[idx]}")
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )
            infer_meta_args.append(f"&meta_{op_output_name_list[idx]}")

    # Execute infer meta function
    CREATE_INFER_META_FUNC_TEMPLATE = """
  phi::{func}({args});
"""
    build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format(
        func=op_infer_meta_map['func'], args=", ".join(infer_meta_args)
    )

    # use dense_{name} or vec_dense_{name} to create Outputs type
    build_output_str += "\n  std::vector<ir::Type> argument_outputs;"

    CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """
  ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset());
  argument_outputs.push_back({name}_dense_tensor_type);
"""
    CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """
  std::vector<ir::Type> {name}_types;
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset()));
  }}
  ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types);
  argument_outputs.push_back({name}_vector_type);
"""
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )

1040
    build_output_str += "  argument.AddOutputs(argument_outputs.begin(), argument_outputs.end());\n"
1041 1042 1043 1044

    return build_output_str


1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
def GenBuild(
    op_class_name,
    op_input_name_list,
    op_input_type_list,
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_type_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
    muta_attr_is_input=False,
):
    build_args_for_declare = ""
    build_func = ""

    build_args_for_declare = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        True,
        muta_attr_is_input,
    )

    build_args_for_define = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        False,
        muta_attr_is_input,
    )
    inset_full_for_mutable_attributes_str = ""
    if not muta_attr_is_input:
        inset_full_for_mutable_attributes_str = (
            GenBuildInserFullForMutableAttribute(
                op_attribute_name_list,
                op_attribute_build_arg_type_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
            )
        )

    build_inputs_str = GenBuildInputs(
        op_input_name_list, op_mutable_attribute_name_list
    )
    build_attributes_str = GenBuildAttributes(
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_type_list,
    )
    build_outputs_str = GenBuildOutputs(
        op_input_name_list,
        op_input_type_list,
        op_mutable_attribute_name_list,
        op_mutable_attribute_type_list,
        op_output_name_list,
        op_output_type_list,
        op_output_size_list,
        op_infer_meta_map,
1119
        muta_attr_is_input,
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    )

    build_func = OP_BUILD_TEMPLATE.format(
        op_name=op_class_name,
        build_args=build_args_for_define,
        build_mutable_attributes=inset_full_for_mutable_attributes_str,
        build_inputs=build_inputs_str,
        build_attributes=build_attributes_str,
        build_outputs=build_outputs_str,
    )

    return (build_args_for_declare, build_func)


1134 1135
def OpGenerator(
    op_yaml_files,
1136
    op_compat_yaml_file,
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
1149 1150
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

1151 1152 1153 1154 1155 1156 1157
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
1158 1159 1160
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
1161 1162 1163 1164 1165 1166

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
1167
        # get op inputs info
1168 1169 1170
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
1171
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
1172
        # get op outputs info
1173 1174
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
1175
        op_output_size_list = op_info.output_size_list
1176
        op_output_optional_list = op_info.output_optional_list
1177
        op_output_intermediate_list = op_info.output_intermediate_list
1178 1179 1180 1181
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
1182 1183
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
1184
        op_attribute_data_type_list = op_info.attribute_data_type_list
1185 1186
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

1203
        # others
1204 1205
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
1206 1207
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
1208
        op_interfaces = ["OpYamlInfoInterface"]
1209 1210
        op_traits = []

1211 1212
        if op_info.infer_meta_func:
            op_interfaces += ["InferMetaInterface"]
1213 1214

        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
1215

1216 1217 1218 1219 1220
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

1221 1222 1223
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
1224 1225 1226 1227 1228 1229 1230
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

1231 1232 1233
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
1234 1235 1236 1237 1238
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
1239

1240 1241 1242 1243 1244 1245 1246 1247
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
            build_func_with_muta_attr_is_input = ""

1248
            if op_infer_meta_map is not None:
1249 1250 1251 1252 1253
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
                ) = GenBuild(
                    op_class_name,
1254
                    op_input_name_list,
1255 1256 1257 1258
                    op_input_type_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
1259
                    op_mutable_attribute_name_list,
1260
                    op_mutable_attribute_type_list,
1261
                    op_non_mutable_attribute_name_list,
1262
                    op_non_mutable_attribute_type_list,
1263 1264
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
1265 1266 1267 1268
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
1269
                    muta_attr_is_input=False,
1270
                )
1271
                if len(op_mutable_attribute_name_list) > 0:
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
                    ) = GenBuild(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
1298

1299
            # gen op_declare_str/op_defined_str
1300
            if len(op_non_mutable_attribute_name_list) == 0:
1301 1302 1303 1304 1305 1306 1307
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
1308 1309
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1310
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1311
                    exclusive_interface=exclusive_interface_str,
1312 1313 1314 1315 1316 1317 1318 1319 1320
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
1321
                        attribute_num=len(op_non_mutable_attribute_name_list)
1322
                    ),
1323
                    attribute_num=len(op_non_mutable_attribute_name_list),
1324 1325
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1326
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1327
                    exclusive_interface=exclusive_interface_str,
1328 1329
                )
                attribute_names_str = (
1330
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
1331 1332 1333
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
1334
                    attribute_num=len(op_non_mutable_attribute_name_list),
1335 1336
                    attribute_names=attribute_names_str,
                )
1337

1338 1339 1340
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
1341
            # generate get op info funciton: inputs
1342
            input_info_list = []
1343 1344 1345 1346 1347 1348 1349 1350
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
1351
                    )
1352 1353 1354 1355 1356 1357 1358 1359 1360
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
1361
                    )
1362 1363 1364 1365 1366
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1379
                    )
1380 1381 1382
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1383
            if len(op_non_mutable_attribute_name_list) > 0:
1384
                attribute_info_list = []
1385
                for idx in range(len(op_non_mutable_attribute_name_list)):
1386 1387
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1388 1389 1390 1391 1392
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1393
                        )
1394
                    )
1395
                attribute_info_str = ", ".join(attribute_info_list)
1396 1397 1398 1399 1400 1401
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1402

1403 1404
            kernel_func_str = ""
            kernel_param_str = ""
1405
            kernel_key_dtype = ""
1406 1407 1408
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1409 1410 1411 1412
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1426 1427 1428 1429 1430
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1431 1432 1433 1434
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1435
                kernel_key_dtype=kernel_key_dtype,
1436 1437
                inplace=inplace_str,
                view=view_str,
1438
            )
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            # generate op verify function str
            op_verify_str = gen_verify_func_str(
                op_class_name,
                op_input_type_list,
                op_input_optional_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
                op_non_mutable_attribute_name_list,
                op_non_mutable_attribute_type_list,
                op_output_type_list,
                op_output_optional_list,
            )
1452

1453
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
1454

1455 1456 1457 1458
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1459 1460 1461
            ops_defined_list.append(build_func_with_muta_attr_not_input)
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1462
            ops_defined_list.append(op_verify_str)
1463
            ops_defined_list.append(op_infer_meta_str)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1475 1476 1477 1478 1479

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1480 1481 1482 1483 1484 1485 1486
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1487 1488 1489
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1490 1491 1492 1493 1494 1495 1496 1497
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1498 1499 1500 1501 1502

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1503
    source_file_str = CC_FILE_TEMPLATE.format(
1504 1505 1506
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1550
        op_compat_yaml_file,
1551 1552 1553 1554 1555
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )