op_gen.py 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml
19
from op_build_gen import gen_build_func_str
20 21
from op_interface_gen import gen_exclusive_interface_str, gen_op_infer_meta_str
from op_member_func_gen import gen_op_get_inputs_outputs_str
22
from op_verify_gen import gen_verify_func_str
23 24 25 26 27 28 29 30 31 32 33 34

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
35
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
36

37 38
#include <vector>

39 40
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
41
#include "paddle/ir/core/op_base.h"
42
#include "paddle/fluid/ir/dialect/utils.h"
43
#include "paddle/fluid/ir/dialect/op_yaml_info_util.h"
44
#include "paddle/fluid/ir/interface/op_yaml_info.h"
45
#include "paddle/fluid/ir/interface/infermeta.h"
46
#include "paddle/fluid/ir/trait/inplace.h"
H
hong 已提交
47 48 49
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

50
{input}
51 52

{declare_type_id}
53 54 55 56 57 58
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

59 60 61 62
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

63 64 65 66 67 68 69
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
70
  static OpInfoTuple GetOpInfo();
71
  static void Build({build_args});
72
  {build_mutable_attr_is_input}
73
  {build_attr_num_over_1}
74
  void Verify();
75
{get_inputs_and_outputs}
H
hong 已提交
76
{exclusive_interface}
77 78 79 80 81 82 83 84 85 86 87 88
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
89
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
90

91
#include "paddle/fluid/ir/dialect/pd_op.h"
92 93
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
94 95
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
96
#include "paddle/ir/core/builtin_op.h"
97
#include "paddle/ir/core/ir_context.h"
98
#include "paddle/phi/core/enforce.h"
99 100 101 102 103 104 105
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
106
#include "paddle/phi/api/lib/utils/allocator.h"
107

108
{input}
109 110

{define_type_id}
111 112 113 114 115 116
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

117
# get op info
118 119
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
120 121 122
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
123 124
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{"{kernel_key_dtype}"}}, {{{inplace}}}, {{{view}}});

125
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
126 127
}}
"""
128
CONSTRUCT_INPUT_INFO_TEMPLATE = """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
129 130 131 132 133 134 135
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

136

137 138 139 140
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

141 142 143 144 145 146 147 148
scalar_type_maps = {
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}

149

150 151 152 153 154 155 156 157 158 159 160 161
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


162 163 164 165 166 167 168 169
def to_phi_and_fluid_grad_op_name(op_item):
    # Templat: sum_grad (reduce_sum_grad), sum_double_grad
    rtn = []
    all_names = op_item.split(', ')
    for name in all_names:
        backward_phi_name, backward_fluid_name = to_phi_and_fluid_op_name(name)
        rtn.append([backward_phi_name, backward_fluid_name])
    return rtn
170 171


172
# =====================================
173 174 175 176 177 178 179 180 181 182
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
183 184 185 186
            forward_phi_name, forward_fluid_name = to_phi_and_fluid_op_name(
                compat['op']
            )
            if op_name == forward_phi_name:
187
                return compat
188 189 190 191 192
            elif 'backward' in compat.keys():
                bkw_names = to_phi_and_fluid_grad_op_name(compat['backward'])
                for name in bkw_names:
                    if op_name == name[0]:
                        return compat
193 194 195 196 197
        return None


# =====================================
# Parse Op Information From Yaml
198 199
# =====================================
class OpInfoParser:
200
    def __init__(self, op_yaml_item, op_compat_item):
201
        self.op_yaml_item = op_yaml_item
202
        self.op_compat_item = op_compat_item
203
        self.op_phi_name = self.parse_op_phi_name()
204
        # parse inputs
205 206 207
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
208
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
209 210 211
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
212

213
        # parse outputs
214 215
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
216
        self.output_size_list = self.parse_output_size_list()
217
        self.output_optional_list = self.parse_output_optional_list()
218
        self.output_intermediate_list = self.parse_output_intermediate_list()
219 220 221 222 223
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
224

225
        # parse attributes
226 227 228
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
229 230
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
231 232
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
233 234
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
235
                'const std::vector<Scalar>&',
236
            ],
Z
zhangbo9674 已提交
237 238 239
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
240 241 242 243 244
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
245
                'const std::vector<float>&',
246 247 248 249 250
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
251
                'const std::vecot<bool>&',
252 253 254 255
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
256
                'const std::vector<std::string>&',
257 258 259 260 261 262 263 264
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
265
                'ir::ArrayAttribute<ir::Int64Attribute>',
266
                'const std::vector<int64_t>&',
267 268
            ],
            'int[]': [
Z
zhangbo9674 已提交
269
                'ir::ArrayAttribute<ir::Int32Attribute>',
270
                'const std::vector<int>&',
271 272
            ],
        }
273 274
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
275 276 277
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
278
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
279 280 281
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
282 283
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

284 285 286 287 288 289
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

290 291 292 293 294 295 296 297
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

298 299 300
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
301
        if 'infer_meta' in self.op_yaml_item:
302
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
303
        else:
304
            self.infer_meta_func = None
H
hong 已提交
305

306 307 308 309
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

310 311 312 313 314 315 316 317 318
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

319
    def parse_op_phi_name(self):
320 321 322
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

338 339 340 341 342
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

343 344 345 346 347 348 349 350 351 352 353 354 355
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
356 357
                        scalar_attr == "depth"
                        and self.op_phi_name[0] == "one_hot"
358
                    ):
359
                        mutable_attribute_name_list.append("num_classes")
360
                    else:
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                        mutable_attribute_name_list.append(scalar_attr)
                    data_type = self.op_compat_item['scalar'][scalar_attr][
                        'data_type'
                    ]
                    # patch for isclose and allclose
                    if (self.op_compat_item['op'] == "isclose") or (
                        self.op_compat_item['op'] == "allclose"
                    ):
                        data_type = "float"
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            data_type,
                        ]
                    )
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )
        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
473 474 475 476
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
477 478
        return optional_list

479 480 481 482 483 484 485 486 487
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

488 489 490 491 492 493 494 495 496 497
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
498
            'SelectedRows': 'paddle::dialect::SelectedRowsType',
499 500 501 502 503 504 505 506 507
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

508 509 510 511 512 513 514 515 516
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

517 518 519 520
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
521 522 523 524
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
525
            else:
526
                optional_list.append("false")
527 528
        return optional_list

529 530 531 532 533 534 535 536 537 538 539 540
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

541 542 543 544 545 546
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

565 566 567 568
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
569
                attribute_info['typename'] in self.attr_types_map
570
            ), f"{self.op_phi_name} : Attr type error."
571
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
572 573
        return type_list

574 575 576 577 578 579 580 581 582
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

583 584 585 586 587 588 589 590
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
591
            else:
592 593
                default_value_list.append(None)
        return default_value_list
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
625 626 627 628 629 630 631 632 633 634 635 636


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


def OpGenerator(
    op_yaml_files,
637
    op_compat_yaml_file,
638 639 640 641 642 643 644 645 646 647 648 649
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
650 651
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

652 653 654 655 656 657 658
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
659 660 661
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
662 663 664 665 666 667

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
668
        # get op inputs info
669 670 671
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
672
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
673
        # get op outputs info
674 675
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
676
        op_output_size_list = op_info.output_size_list
677
        op_output_optional_list = op_info.output_optional_list
678
        op_output_intermediate_list = op_info.output_intermediate_list
679 680 681 682
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
683 684
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
685
        op_attribute_data_type_list = op_info.attribute_data_type_list
686 687
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

704
        # others
705 706
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
707 708
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
709
        op_interfaces = ["OpYamlInfoInterface"]
710 711
        op_traits = []

712 713
        if op_info.infer_meta_func:
            op_interfaces += ["InferMetaInterface"]
714 715

        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
716

717 718 719 720 721
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

722 723 724
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
725 726 727
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
728 729 730 731

            if op_name[-1] == "_":
                op_traits += ["InplaceTrait"]

732 733 734 735
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

736 737 738
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
739 740 741 742 743
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
744

745 746 747 748 749 750
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
751 752
            build_attr_num_over_1 = ""
            build_func_with_attr_is_map = ""
753 754
            build_func_with_muta_attr_is_input = ""

755
            if op_infer_meta_map is not None:
756 757 758
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
759
                ) = gen_build_func_str(
760
                    op_class_name,
761
                    op_input_name_list,
762 763
                    op_input_type_list,
                    op_attribute_name_list,
764
                    op_attribute_type_list,
765 766
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
767
                    op_mutable_attribute_name_list,
768
                    op_mutable_attribute_type_list,
769
                    op_non_mutable_attribute_name_list,
770
                    op_non_mutable_attribute_type_list,
771 772
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
773 774 775 776
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
777
                    muta_attr_is_input=False,
778
                )
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
                if len(op_attribute_name_list) > 1:
                    (
                        build_args_with_attr_is_map_for_declare,
                        build_func_with_attr_is_map,
                    ) = gen_build_func_str(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_type_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=False,
                        attr_args_is_map=True,
                    )
                    build_attr_num_over_1 = (
                        "static void Build({build_args});".format(
                            build_args=build_args_with_attr_is_map_for_declare
                        )
                    )

810
                if len(op_mutable_attribute_name_list) > 0:
811 812 813
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
814
                    ) = gen_build_func_str(
815 816 817 818
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
819
                        op_attribute_type_list,
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
838

839
            # gen op_declare_str/op_defined_str
840
            if len(op_non_mutable_attribute_name_list) == 0:
841 842 843 844 845 846 847
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
848 849
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
850
                    build_attr_num_over_1=build_attr_num_over_1,
851
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
852
                    exclusive_interface=exclusive_interface_str,
853 854 855 856 857 858 859 860 861
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
862
                        attribute_num=len(op_non_mutable_attribute_name_list)
863
                    ),
864
                    attribute_num=len(op_non_mutable_attribute_name_list),
865 866
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
867
                    build_attr_num_over_1=build_attr_num_over_1,
868
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
869
                    exclusive_interface=exclusive_interface_str,
870 871
                )
                attribute_names_str = (
872
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
873 874 875
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
876
                    attribute_num=len(op_non_mutable_attribute_name_list),
877 878
                    attribute_names=attribute_names_str,
                )
879

880 881 882
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
883
            # generate get op info funciton: inputs
884
            input_info_list = []
885 886 887 888 889 890 891 892
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
893
                    )
894 895 896 897 898 899 900 901 902
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
903
                    )
904 905 906 907 908
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
909 910 911 912 913 914 915 916 917 918 919 920
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
921
                    )
922 923 924
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
925
            if len(op_non_mutable_attribute_name_list) > 0:
926
                attribute_info_list = []
927
                for idx in range(len(op_non_mutable_attribute_name_list)):
928 929
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
930 931 932 933 934
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
935
                        )
936
                    )
937
                attribute_info_str = ", ".join(attribute_info_list)
938 939 940 941 942 943
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
944

945 946
            kernel_func_str = ""
            kernel_param_str = ""
947
            kernel_key_dtype = ""
948 949 950
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
951 952 953 954
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
955

956 957 958 959 960 961 962 963 964 965 966 967
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

968 969 970 971 972
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
973 974 975 976
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
977
                kernel_key_dtype=kernel_key_dtype,
978 979
                inplace=inplace_str,
                view=view_str,
980
            )
981

982 983 984 985 986 987 988 989 990 991 992 993
            # generate op verify function str
            op_verify_str = gen_verify_func_str(
                op_class_name,
                op_input_type_list,
                op_input_optional_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
                op_non_mutable_attribute_name_list,
                op_non_mutable_attribute_type_list,
                op_output_type_list,
                op_output_optional_list,
            )
994

995
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
996

997 998 999 1000
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1001
            ops_defined_list.append(build_func_with_muta_attr_not_input)
1002
            ops_defined_list.append(build_func_with_attr_is_map)
1003 1004
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1005
            ops_defined_list.append(op_verify_str)
1006
            ops_defined_list.append(op_infer_meta_str)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1018 1019 1020 1021 1022

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1023 1024 1025 1026 1027 1028 1029
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1030 1031 1032
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1033 1034 1035 1036 1037 1038 1039 1040
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1041 1042 1043 1044 1045

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1046
    source_file_str = CC_FILE_TEMPLATE.format(
1047 1048 1049
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1093
        op_compat_yaml_file,
1094 1095 1096 1097 1098
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )