op_gen.py 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import logging
17 18 19
import os

import yaml
20
from op_build_gen import gen_build_func_str
21 22 23
from op_interface_gen import (
    gen_exclusive_interface_str,
    gen_op_infer_meta_str,
C
Chen Zhiyang 已提交
24
    gen_op_vjp_str,
25
)
26
from op_member_func_gen import gen_op_get_inputs_outputs_str
27
from op_verify_gen import gen_verify_func_str
28 29 30 31
from vjp_interface_gen_op_list import (
    vjp_interface_declare_gen_op_list,
    vjp_interface_implementation_gen_op_list,
)
32 33 34 35 36 37 38 39 40 41 42 43

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
44
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
45

46 47
#include <vector>

48 49
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
50
#include "paddle/ir/core/op_base.h"
51 52 53 54 55 56
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/utils.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/op_yaml_info_util.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/op_yaml_info.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/infermeta.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/trait/inplace.h"
H
hong 已提交
57 58
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
59
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h"
H
hong 已提交
60

61
{input}
62 63

{declare_type_id}
64 65 66 67 68 69
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

70 71 72 73
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

74 75 76 77 78 79 80
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
81
  static OpInfoTuple GetOpInfo();
82
  static void Build({build_args});
83
  {build_mutable_attr_is_input}
84
  {build_attr_num_over_1}
85
  void Verify();
86
{get_inputs_and_outputs}
H
hong 已提交
87
{exclusive_interface}
88 89 90 91 92 93 94 95 96 97 98 99
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
100
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
101
#include "{h_file}"
102 103
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_type.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
104 105
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
106
#include "paddle/ir/core/builtin_op.h"
107
#include "paddle/ir/core/ir_context.h"
108
#include "paddle/phi/core/enforce.h"
109 110 111 112 113 114 115
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
Z
zhangbo9674 已提交
116
#include "paddle/phi/infermeta/fusion.h"
117
#include "paddle/phi/api/lib/utils/allocator.h"
118 119
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/ir/core/op_base.h"
120

121
{input}
122 123

{define_type_id}
124
"""
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# =====================================
# String Template for pd_op_vjp.cc file code gen
# =====================================
VJP_CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_op.h"
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
#include "paddle/fluid/primitive/type/lazy_tensor.h"
#include "paddle/ir/core/builtin_op.h"
#include "paddle/ir/core/op_base.h"
#include "paddle/phi/common/int_array.h"

namespace paddle {{
namespace dialect {{
{input}
}}  // namespace dialect
}}  // namespace paddle
"""
143 144 145 146 147

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

148
# get op info
149 150
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
151 152 153
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
154
  paddle::dialect::OpRunTimeInfo run_time_info = paddle::dialect::OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{{kernel_key_dtype}}}, {{{kernel_key_backend}}}, {{{inplace}}}, {{{view}}});
155
  return std::make_tuple(inputs, attributes, outputs, run_time_info, "{origin_op_name}");
156 157
}}
"""
158 159 160
CONSTRUCT_INPUT_INFO_TEMPLATE = """paddle::dialect::OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
CONSTRUCT_OUTPUT_INFO_TEMPLATE = """paddle::dialect::OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = """paddle::dialect::OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
161

162

163 164 165 166
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

167 168 169 170 171 172 173 174
scalar_type_maps = {
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}

175
_NO_NEED_GEN_OPS = {'add_n', 'split_grad'}
176

177

178 179 180 181 182 183 184 185 186 187 188 189
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


190 191 192 193 194 195 196 197
def to_phi_and_fluid_grad_op_name(op_item):
    # Templat: sum_grad (reduce_sum_grad), sum_double_grad
    rtn = []
    all_names = op_item.split(', ')
    for name in all_names:
        backward_phi_name, backward_fluid_name = to_phi_and_fluid_op_name(name)
        rtn.append([backward_phi_name, backward_fluid_name])
    return rtn
198 199


200
# =====================================
201 202 203 204 205 206 207 208 209 210
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
211 212 213 214
            forward_phi_name, forward_fluid_name = to_phi_and_fluid_op_name(
                compat['op']
            )
            if op_name == forward_phi_name:
215
                return compat
216 217 218 219 220
            elif 'backward' in compat.keys():
                bkw_names = to_phi_and_fluid_grad_op_name(compat['backward'])
                for name in bkw_names:
                    if op_name == name[0]:
                        return compat
221 222 223 224 225
        return None


# =====================================
# Parse Op Information From Yaml
226 227
# =====================================
class OpInfoParser:
228
    def __init__(self, op_yaml_item, op_compat_item):
229
        self.op_yaml_item = op_yaml_item
230
        self.op_compat_item = op_compat_item
231
        self.op_phi_name = self.parse_op_phi_name()
232
        # parse inputs
233 234 235
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
236
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
237 238 239
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
240

241
        # parse outputs
242 243
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
244
        self.output_size_list = self.parse_output_size_list()
245
        self.output_optional_list = self.parse_output_optional_list()
246
        self.output_intermediate_list = self.parse_output_intermediate_list()
247 248 249 250 251
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
252

253
        # parse attributes
254 255 256
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
257 258
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
259 260
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
261 262
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
263
                'const std::vector<Scalar>&',
264
            ],
Z
zhangbo9674 已提交
265 266 267
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
268 269 270 271 272
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
273
                'const std::vector<float>&',
274 275 276 277 278
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
W
WangZhen 已提交
279
                'const std::vector<bool>&',
280
            ],
Y
YuanRisheng 已提交
281
            'str': ['ir::StrAttribute', 'const std::string&'],
282 283
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
284
                'const std::vector<std::string>&',
285
            ],
Y
YuanRisheng 已提交
286
            'Place': ['paddle::dialect::PlaceAttribute', 'const Place&'],
287 288 289 290 291 292
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
293
                'ir::ArrayAttribute<ir::Int64Attribute>',
294
                'const std::vector<int64_t>&',
295 296
            ],
            'int[]': [
Z
zhangbo9674 已提交
297
                'ir::ArrayAttribute<ir::Int32Attribute>',
298
                'const std::vector<int>&',
299 300
            ],
        }
301 302
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
303 304 305
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
C
Chen Zhiyang 已提交
306 307 308
        self.attribute_gen_arg_type_list = (
            self.parse_attribute_gen_arg_type_list()
        )
309
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
310 311 312
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
313 314
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

315 316 317 318 319 320
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

321 322 323 324 325 326 327 328
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

329 330 331
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
332
        if 'infer_meta' in self.op_yaml_item:
333
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
334
        else:
335
            self.infer_meta_func = None
H
hong 已提交
336

337 338 339
        # parse backward name
        self.backward_name = self.parse_backward_name()

340 341 342 343
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

344 345 346
        # parse has_custom_verify
        self.custom_verify = self.parse_custom_verify()

347 348 349 350 351 352 353 354 355
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

356 357 358 359 360
    def parse_custom_verify(self):
        if 'custom_verify' in self.op_yaml_item:
            return self.op_yaml_item['custom_verify']
        return False

361
    def parse_op_phi_name(self):
362 363 364
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

380 381 382 383 384
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

385 386 387 388 389 390 391 392 393 394 395 396 397
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
398 399
                        scalar_attr == "depth"
                        and self.op_phi_name[0] == "one_hot"
400
                    ):
401
                        mutable_attribute_name_list.append("num_classes")
402
                    else:
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                        mutable_attribute_name_list.append(scalar_attr)
                    data_type = self.op_compat_item['scalar'][scalar_attr][
                        'data_type'
                    ]
                    # patch for isclose and allclose
                    if (self.op_compat_item['op'] == "isclose") or (
                        self.op_compat_item['op'] == "allclose"
                    ):
                        data_type = "float"
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            data_type,
                        ]
                    )
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )
        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
515 516 517 518
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
519 520
        return optional_list

521 522 523 524 525 526 527 528 529
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

530 531 532 533 534 535 536 537 538 539
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
540
            'SelectedRows': 'paddle::dialect::SelectedRowsType',
541 542 543 544 545 546 547 548 549
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

550 551 552 553 554 555 556 557 558
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

559 560 561 562
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
563 564 565 566
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
567
            else:
568
                optional_list.append("false")
569 570
        return optional_list

571 572 573 574 575 576 577 578 579 580 581 582
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

583 584 585 586 587 588
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

589 590 591 592 593 594 595 596 597 598 599 600
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
601 602 603 604 605 606 607 608 609 610 611 612 613
                op_name = self.op_yaml_item['name']
                attr_name = attribute_info['name']
                if (
                    op_name not in ["isclose", "allclose"]
                    and self.op_compat_item is not None
                    and 'scalar' in self.op_compat_item.keys()
                    and attr_name in self.op_compat_item['scalar'].keys()
                    and 'data_type'
                    in self.op_compat_item['scalar'][attr_name].keys()
                ):
                    temp_type = self.op_compat_item['scalar'][attr_name][
                        'data_type'
                    ]
614 615
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
Y
YuanRisheng 已提交
616
                    temp_type = "const " + attribute_info['data_type'] + "&"
617 618 619
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

C
Chen Zhiyang 已提交
620 621 622 623 624 625 626 627 628 629 630
    def parse_attribute_gen_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            temp_type = self.attr_types_map[attribute_info['typename']][1]
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

631 632 633 634
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
635
                attribute_info['typename'] in self.attr_types_map
636
            ), f"{self.op_phi_name} : Attr type error."
637
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
638 639
        return type_list

640 641 642 643 644 645 646 647 648
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

649 650 651 652 653 654 655 656
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
657
            else:
658 659
                default_value_list.append(None)
        return default_value_list
660

661 662 663 664 665 666 667 668 669 670 671 672
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

673 674 675 676 677 678
    def parse_backward_name(self):
        if 'backward' in self.op_yaml_item:
            return self.op_yaml_item['backward']
        else:
            return None

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
697 698 699 700 701 702 703 704 705 706 707 708


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


def OpGenerator(
    op_yaml_files,
709
    op_compat_yaml_file,
710 711 712 713
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
714
    op_vjp_cc_file,
715 716 717 718 719 720 721 722
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
723 724
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

725 726 727 728 729
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
730
    op_info_items = {}
731
    for op in op_yaml_items:
732 733
        op_info_items[op['name']] = OpInfoParser(
            op, op_compat_parser.get_compat(op['name'])
734
        )
735 736 737 738
    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
739
    ops_vjp_defined_list = []  # all op vjp static interface defination
740
    for key, op_info in op_info_items.items():
741
        # get op inputs info
742 743 744
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
745
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
746
        # get op outputs info
747 748
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
749
        op_output_size_list = op_info.output_size_list
750
        op_output_optional_list = op_info.output_optional_list
751
        op_output_intermediate_list = op_info.output_intermediate_list
752 753 754 755
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
756 757
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
758
        op_attribute_data_type_list = op_info.attribute_data_type_list
759 760
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

777
        # others
778 779
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
780 781
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
782
        op_interfaces = ["paddle::dialect::OpYamlInfoInterface"]
783 784
        op_traits = []

785
        if op_info.infer_meta_func:
786
            op_interfaces += ["paddle::dialect::InferMetaInterface"]
787

788 789
        if (
            op_info.backward_name
790
            and op_info.op_phi_name[0] in vjp_interface_declare_gen_op_list
791
        ):
792
            op_interfaces += ["paddle::dialect::VjpInterface"]
793
        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
794

795 796
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
797 798
            if op_name in _NO_NEED_GEN_OPS:
                continue
799 800 801
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

802 803 804
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
805 806 807
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
808 809

            if op_name[-1] == "_":
810
                op_traits += ["paddle::dialect::InplaceTrait"]
811

812 813 814 815
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

816 817 818
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
819 820 821 822 823
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
824

825 826 827 828 829 830
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
831 832
            build_attr_num_over_1 = ""
            build_func_with_attr_is_map = ""
833 834
            build_func_with_muta_attr_is_input = ""

835
            if op_infer_meta_map is not None:
836 837 838
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
839
                ) = gen_build_func_str(
840
                    op_class_name,
841
                    op_input_name_list,
842 843
                    op_input_type_list,
                    op_attribute_name_list,
844
                    op_attribute_type_list,
845 846
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
847
                    op_mutable_attribute_name_list,
848
                    op_mutable_attribute_type_list,
849
                    op_non_mutable_attribute_name_list,
850
                    op_non_mutable_attribute_type_list,
851 852
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
853 854 855 856
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
857
                    muta_attr_is_input=False,
858
                )
Z
zhangbo9674 已提交
859
                if len(op_attribute_name_list) > 0:
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                    (
                        build_args_with_attr_is_map_for_declare,
                        build_func_with_attr_is_map,
                    ) = gen_build_func_str(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_type_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=False,
                        attr_args_is_map=True,
                    )
                    build_attr_num_over_1 = (
                        "static void Build({build_args});".format(
                            build_args=build_args_with_attr_is_map_for_declare
                        )
                    )

890
                if len(op_mutable_attribute_name_list) > 0:
891 892 893
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
894
                    ) = gen_build_func_str(
895 896 897 898
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
899
                        op_attribute_type_list,
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
918

919
            # gen op_declare_str/op_defined_str
920
            if len(op_non_mutable_attribute_name_list) == 0:
921 922 923 924 925 926 927
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
928 929
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
930
                    build_attr_num_over_1=build_attr_num_over_1,
931
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
932
                    exclusive_interface=exclusive_interface_str,
933 934 935 936 937 938 939 940 941
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
942
                        attribute_num=len(op_non_mutable_attribute_name_list)
943
                    ),
944
                    attribute_num=len(op_non_mutable_attribute_name_list),
945 946
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
947
                    build_attr_num_over_1=build_attr_num_over_1,
948
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
949
                    exclusive_interface=exclusive_interface_str,
950 951
                )
                attribute_names_str = (
952
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
953 954 955
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
956
                    attribute_num=len(op_non_mutable_attribute_name_list),
957 958
                    attribute_names=attribute_names_str,
                )
959

960 961 962
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
963
            # generate get op info funciton: inputs
964
            input_info_list = []
965 966 967 968 969 970 971 972
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
973
                    )
974 975 976 977 978 979 980 981 982
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
983
                    )
984 985 986 987 988
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
989 990 991 992 993 994 995 996 997 998 999 1000
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1001
                    )
1002 1003 1004
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1005
            if len(op_non_mutable_attribute_name_list) > 0:
1006
                attribute_info_list = []
1007
                for idx in range(len(op_non_mutable_attribute_name_list)):
1008 1009
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1010 1011 1012 1013 1014
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1015
                        )
1016
                    )
1017
                attribute_info_str = ", ".join(attribute_info_list)
1018 1019 1020 1021 1022 1023
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1024

1025 1026
            kernel_func_str = ""
            kernel_param_str = ""
1027
            kernel_key_dtype = ""
1028
            kernel_key_backend = ""
1029 1030 1031
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1032 1033 1034 1035
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1036 1037
                    if kernel_key_dtype != "":
                        kernel_key_dtype = '"' + kernel_key_dtype + '"'
1038 1039 1040 1041 1042 1043
                if 'backend' in op_kernel_map and op_kernel_map['backend']:
                    kernel_key_backend = '", "'.join(
                        op_kernel_map['backend']['candidates']
                    )
                    if kernel_key_backend != "":
                        kernel_key_backend = '"' + kernel_key_backend + '"'
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1057 1058 1059 1060 1061
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1062 1063 1064 1065
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1066
                kernel_key_dtype=kernel_key_dtype,
1067
                kernel_key_backend=kernel_key_backend,
1068 1069
                inplace=inplace_str,
                view=view_str,
1070
                origin_op_name=op_info.op_yaml_item['name'],
1071
            )
1072

1073
            # generate op verify function str
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            op_verify_str = ''
            if not op_info.custom_verify:
                op_verify_str = gen_verify_func_str(
                    op_class_name,
                    op_input_type_list,
                    op_input_optional_list,
                    op_mutable_attribute_name_list,
                    op_mutable_attribute_type_list,
                    op_non_mutable_attribute_name_list,
                    op_non_mutable_attribute_type_list,
                    op_output_type_list,
                    op_output_optional_list,
                )
1087

1088
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
1089

1090 1091 1092 1093 1094 1095
            # =================================== #
            #         gen Vjp func str      #
            # =================================== #

            # generate op vjp function str

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            op_vjp_str = ''
            if dialect_name == "cinn":
                logging.warning("cinn is currently not support Vjp function")
            else:
                # TODO(chenzhiyang) add vjp gen code
                if (
                    op_info.backward_name
                    and op_info.op_phi_name[0]
                    in vjp_interface_implementation_gen_op_list
                ):
                    op_vjp_str = gen_op_vjp_str(
                        op_class_name,
                        op_info.backward_name,
                        op_name,
                        op_info_items[op_info.op_phi_name[0]],
                        op_info_items[op_info.backward_name],
                    )
1113

1114 1115 1116 1117
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1118
            ops_defined_list.append(build_func_with_muta_attr_not_input)
1119
            ops_defined_list.append(build_func_with_attr_is_map)
1120 1121
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1122
            ops_defined_list.append(op_verify_str)
1123
            ops_defined_list.append(op_infer_meta_str)
1124 1125
            # NOTE(chenxi67)skip if dialect_name==cinn
            if dialect_name == "cinn":
1126
                pass
1127
            else:
1128
                ops_vjp_defined_list.append(op_vjp_str)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1140 1141 1142 1143 1144

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1145 1146 1147 1148 1149 1150 1151
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1152 1153 1154
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1155 1156 1157 1158 1159 1160 1161 1162
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1163 1164 1165 1166 1167

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1168
    source_file_str = CC_FILE_TEMPLATE.format(
1169 1170 1171
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1172 1173
    )  # Add head

1174 1175 1176
    vjp_source_file_str = VJP_CC_FILE_TEMPLATE.format(
        input="".join(ops_vjp_defined_list)
    )
1177
    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
1178
    with open(op_def_h_file, 'w') as f:
1179
        f.write(head_file_str)
1180
    with open(op_def_cc_file, 'w') as f:
1181
        f.write(source_file_str)
1182 1183 1184 1185 1186
    # NOTE(Aurelius84): op_gen.py is called multiply times,
    # and vjp is only avaible for pd dialect.
    if dialect_name != 'cinn' and op_vjp_cc_file:
        with open(op_vjp_cc_file, 'w') as f:
            f.write(vjp_source_file_str)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
1202
    parser.add_argument('--op_vjp_cc_file', type=str)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file
1220
    op_vjp_cc_file = args.op_vjp_cc_file
1221 1222 1223 1224

    # auto code generate
    OpGenerator(
        op_yaml_files,
1225
        op_compat_yaml_file,
1226 1227 1228 1229
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
1230
        op_vjp_cc_file,
1231
    )