custom_operator.cc 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/phi/core/tensor_utils.h"
43
#include "paddle/utils/any.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

66
inline static bool IsDuplicableVar(const std::string& var_name) {
67 68 69 70
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

71 72
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
73
  std::string suffix = kGradVarSuffix;
74 75 76 77 78 79 80 81
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
82 83
}

84 85 86 87 88 89 90 91 92 93 94
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

95 96
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
97 98 99
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

100
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
101 102 103 104 105 106 107 108 109 110 111 112
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

113
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
114 115 116 117

  return rlt;
}

118 119 120 121 122 123 124 125
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
126 127
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
128
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
129 130
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
131
  for (auto& in_name : inputs) {
132
    VLOG(3) << "Custom Operator: input name - " << in_name;
133 134 135 136 137 138
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
139
      std::vector<paddle::experimental::Tensor> custom_vec_in;
140 141 142 143 144 145 146 147 148 149 150
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
151
        paddle::experimental::Tensor custom_t;
152
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
153 154
        custom_vec_in.emplace_back(custom_t);
      }
155
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
156 157 158 159 160 161 162
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
163
      paddle::experimental::Tensor custom_in;
164
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
165 166 167 168 169 170 171 172 173 174
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
175
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
176
#endif
177
    }
178 179
  }

180 181 182 183 184
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
185
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
186
    } else if (attr_type_str == "int") {
187
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
188
    } else if (attr_type_str == "float") {
189
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
190
    } else if (attr_type_str == "int64_t") {
191
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
192
    } else if (attr_type_str == "std::string") {
193
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
194
    } else if (attr_type_str == "std::vector<int>") {
195
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
196
    } else if (attr_type_str == "std::vector<float>") {
197
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
198
    } else if (attr_type_str == "std::vector<int64_t>") {
199
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
200
    } else if (attr_type_str == "std::vector<std::string>") {
201
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
202 203 204 205 206
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
207
          "`std::vector<float>`, `std::vector<int64_t>`, "
208 209 210 211 212
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
      PADDLE_ENFORCE_NE(vec_out.empty(), true,
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.", j,
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
240
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
241 242 243 244 245 246 247 248 249 250 251
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
      PADDLE_ENFORCE_NOT_NULL(
          out, platform::errors::NotFound("Output tensor (%s) is nullptr.",
                                          out_name));
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
252
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
253 254 255
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
        true_out_ptrs.size(), calc_outs->size(),
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
            true_out_ptrs.size(), calc_outs->size()));
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
273
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
274
      // assgin meta info
275
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
276 277 278
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
279 280
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
281 282 283
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
284
      }
285 286 287 288 289 290 291 292
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
293 294 295
  }
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
314
                       return phi::vectorize(ddim);
315 316 317 318 319
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
320
      input_shapes.emplace_back(phi::vectorize(ddim));
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
376
                       return phi::make_ddim(shape);
377 378 379
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
380
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
381 382 383 384
    }
  }
}

385 386 387 388 389 390 391 392 393
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
394
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
395 396 397 398 399 400 401 402 403 404 405 406 407
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
408
      const framework::ExecutionContext& ctx) const override {
409 410 411 412 413 414 415 416 417 418
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
419
      const OpKernelType& expected_kernel_type) const override {
420 421 422 423 424 425 426 427 428 429 430 431 432 433
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
434 435 436 437 438 439
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
440 441
    }
    for (auto& out_name : outputs_) {
442 443 444 445 446 447
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
448
    }
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
488
            "`std::vector<float>`, `std::vector<int64_t>`, "
489 490 491 492 493
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
522
      const std::vector<std::string>& outputs, bool is_double_grad)
523 524 525
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
526 527
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
528 529 530 531 532 533 534 535 536

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
537
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
538
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
554
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
555
      if (detail::IsDuplicableVar(out_name)) {
556 557 558
        grad_op->SetOutput(
            out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                                      /*drop_empty_grad=*/false));
559
      } else {
560 561
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(
                                         out_name, is_double_grad_)));
562
      }
563
    }
564
    grad_op->SetAttrMap(this->Attrs());
565 566 567 568 569 570
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
571
  bool is_double_grad_{false};
572 573 574 575 576 577 578 579 580 581 582 583 584
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
585
      const std::vector<std::string>& outputs, bool is_double_grad)
586 587 588 589
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
590 591
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
592 593 594 595 596 597 598 599 600 601 602 603 604 605

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
606
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
607
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
623
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
624 625
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
626
    }
627
    grad_op->SetAttrMap(this->Attrs());
628 629 630 631 632 633
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
634
  bool is_double_grad_{false};
635 636 637 638
};

//////////// Operator and Kernel Register //////////////

639 640 641
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
642 643
    const proto::VarType::Type type, const platform::Place& place) {
  OpKernelType key(type, place);
644
  VLOG(3) << "Custom Operator: op kernel key: " << key;
645
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
646 647
}

648 649 650 651 652 653
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
654
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
655 656 657 658 659
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
    op_kernel_func = [kernel_func, inputs, outputs,
                      attrs](const framework::ExecutionContext& ctx) {
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
681
                                  platform::CPUPlace());
682
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
683
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
684
                                  platform::CUDAPlace());
685
#endif
686 687
}

688 689
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
690 691 692 693 694 695
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
696 697

  if (OpInfoMap::Instance().Has(op_name)) {
698
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
699 700 701
    return;
  }

702 703 704 705 706 707 708
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

709 710
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
711
          << string::join_strings(op_inputs, ',');
712
  VLOG(3) << "Custom Operator: forward, op outputs: "
713
          << string::join_strings(op_outputs, ',');
714
  VLOG(3) << "Custom Operator: forward, op attrs: "
715
          << string::join_strings(op_attrs, ',');
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
738 739 740 741 742 743 744 745
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
746 747 748
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
749 750 751 752 753 754 755
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
756 757 758
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
759 760 761
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

762
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
763 764 765
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
766
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
767
                         infer_shape_func](InferShapeContext* ctx) {
768
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
769 770
    };
  }
771 772

  // Infer Dtype
773 774 775 776 777 778 779 780
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
781 782 783
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
784 785 786 787 788 789 790
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
791 792 793
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
794 795 796
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

797
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
798 799 800 801 802 803 804
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
805
      std::vector<std::vector<DataType>> vec_input_dtypes;
806

807
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
808
      for (auto& in_name : op_inputs) {
809 810 811 812
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
813
            vec_custom_dtype.emplace_back(
814
                paddle::framework::TransToPhiDataType(dtype));
815 816 817 818
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
819
          input_dtypes.emplace_back(
820
              paddle::framework::TransToPhiDataType(dtype));
821
        }
822
      }
823

824
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
825
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
826

827
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
828
      for (size_t i = 0; i < op_outputs.size(); ++i) {
829 830 831
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
832 833
            auto dtype =
                paddle::framework::TransToProtoVarType(output_dtypes[i]);
834 835 836
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
837 838 839
          ctx->SetOutputDataType(
              out_name,
              paddle::framework::TransToProtoVarType(output_dtypes[i]));
840
        }
841 842 843
      }
    };
  }
844 845

  // Kernel func
846 847
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs,
                         dso_handle);
848 849 850 851 852 853 854 855 856

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
857
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
858
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
859
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
860

861 862
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
863
            << string::join_strings(grad_op_inputs, ',');
864
    VLOG(3) << "Custom Operator: backward, op outputs: "
865 866
            << string::join_strings(grad_op_outputs, ',');

867 868
    bool is_double_grad = (i == 2);

869
    // GradOpDescMaker
870 871
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs,
                           is_double_grad](
872 873 874 875 876 877
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
878
          grad_op_inputs, grad_op_outputs, is_double_grad);
879 880 881 882 883
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
884
                                   grad_op_outputs, is_double_grad](
885 886 887 888
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
889
        const framework::AttributeMap& default_attrs,
890 891 892
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
893
          grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad);
894
      maker.SetDygraphDefaultAttrsMap(default_attrs);
895 896 897 898 899 900 901 902 903 904 905 906 907
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

908
    // Grad InferShape
909
    if (grad_infer_shape_fn == nullptr) {
910 911
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs,
                                is_double_grad](InferShapeContext* ctx) {
912 913 914 915 916 917 918 919 920 921
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
922
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
923 924
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
925 926
            ctx->ShareDim(fwd_name, out_name);
          } else {
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
945 946
          }
        }
947 948 949 950 951 952 953 954
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
955 956 957

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
958
                           grad_op_outputs, grad_op_attrs, dso_handle);
959 960 961 962 963 964 965 966 967 968 969

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
970
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
971
  auto& meta_info_map = op_meta_info_map.GetMap();
972
  VLOG(3) << "Custom Operator: size of op meta info map - "
973 974 975
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
976
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
977
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
978 979 980 981 982 983
  }
}

////////////////////// User APIs ///////////////////////

// load op api
984 985
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
986
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
987
  VLOG(3) << "load custom_op lib: " << dso_name;
988 989 990 991
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
992
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
993
  return op_meta_info_map.GetMap();
994 995 996 997
}

}  // namespace framework
}  // namespace paddle