sharding_optimizer.py 82.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16

W
wangxiaoning 已提交
17 18
from paddle.fluid import core
from paddle.fluid.optimizer import PipelineOptimizer
19 20 21 22 23 24
from paddle.static import (
    create_global_var,
    default_startup_program,
    device_guard,
)
from paddle.utils import unique_name
25

26 27 28 29 30 31 32 33 34 35
from ..utils.log_util import logger
from .common import (
    OP_ROLE_KEY,
    OP_ROLE_VAR_KEY,
    CollectiveHelper,
    OpRole,
    is_backward_op,
    is_optimizer_op,
    is_update_op,
)
36
from .meta_optimizer_base import MetaOptimizerBase
37
from .sharding import utils
38 39 40 41
from .sharding.fp16_helper import FP16Utils
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
42
from .sharding.shard import ProgramSegment, Shard
43 44
from .sharding.utils import (
    get_first_optimize_op_idx,
45
    get_grad_device,
46
    get_var_size,
47 48 49 50 51
    insert_allreduce_ops,
    insert_broadcast_ops,
    insert_cast_ops,
    insert_fill_constant_ops,
    insert_reduce_ops,
52
    insert_scale_loss_grad_ops,
53 54
    insert_sync_calc_op,
    insert_sync_comm_ops,
55
)
56
from .sharding.weight_decay_helper import WeightDecayHelper
57

58
__all__ = []
59 60 61


class ShardingOptimizer(MetaOptimizerBase):
62 63
    """Sharding Optimizer."""

64
    def __init__(self, optimizer):
65
        super().__init__(optimizer)
66 67 68 69
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
70 71
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
72
            "ASPOptimizer",
73 74
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
75
        ]
76
        self.meta_optimizers_black_list = []
77 78 79 80
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
81 82
        self._params = set()
        self._broadcast_vars = set()
83 84 85
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
86 87 88 89
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
90 91 92 93 94 95 96 97 98 99 100 101 102 103

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
104
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
105

W
WangXi 已提交
106
    def _get_sharding_segment_strategy(self):
107
        """get
W
WangXi 已提交
108 109 110 111 112 113 114 115 116
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
117

W
WangXi 已提交
118 119
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
120 121 122
            assert (
                self._broadcast_MB > 0
            ), "segment size should larger than zero !"
W
WangXi 已提交
123 124
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
125 126 127
            assert (
                len(self._sharding_segment_anchors) > 0
            ), "you should set the sharding segment anchors !"
128 129 130 131 132
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
133 134 135
                    str(segment_strategy)
                )
            )
W
WangXi 已提交
136 137 138
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
139
        """get
W
WangXi 已提交
140 141 142 143 144 145 146 147
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
148

149
        # parallelism
W
WangXi 已提交
150 151 152 153 154 155 156
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
157 158
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
159 160 161
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
162
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
163 164 165 166 167 168 169 170
            assert pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                global_world_size == mp_degree * sharding_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, dp_degree
            )
L
lilong12 已提交
171
        else:
172 173 174 175 176 177 178 179 180 181
            assert (
                global_world_size
                == mp_degree * sharding_degree * pp_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size,
                mp_degree,
                sharding_degree,
                pp_degree,
                dp_degree,
            )
182

J
JZ-LIANG 已提交
183
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
184
        if sharding_configs["hybrid_dp"]:
185
            logger.warning(
W
WangXi 已提交
186
                "[hybrid_dp] API setting is deprecated. Now when "
187 188
                "dp_degree >= 2, its will be in hybrid dp mode automatically"
            )
W
WangXi 已提交
189 190 191 192 193 194 195 196 197
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
198
        """get
199 200
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
201 202
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
203
        self._optimizer_sharding
W
WangXi 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
217 218 219
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
220
                dp_mode = "pp_hybrid_dp"
221
            else:
222 223
                assert self.sharding_degree > 1, (
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, "
W
WangXi 已提交
224
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
225
                )
W
WangXi 已提交
226
                dp_mode = "sharding_hybrid_dp"
227

228
        # gradient merge
W
WangXi 已提交
229 230
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
231
        if self.pp_degree <= 1:
W
WangXi 已提交
232
            gm_mode = "sharding_gm"
233
            self._grad2merged_grad = {}
234
        else:
W
WangXi 已提交
235 236
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
237
            gradient_scale_configs = strategy.gradient_scale_configs
238 239 240 241 242 243 244
            assert gradient_scale_configs['scale_strategy'] == 'avg', (
                'For pipeline mode, the '
                'gradient scale mode should '
                'be "avg", but got {}'.format(
                    gradient_scale_configs['scale_strategy']
                )
            )
245 246 247 248
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
249
        if gm_acc_step > 1:
250 251 252 253 254
            logger.info(
                "Gradient merge in [{}], acc step = [{}]".format(
                    gm_mode, gm_acc_step
                )
            )
255

256 257 258
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
259 260 261 262 263 264
        if (
            self.sharding_degree == 1
            and self.dp_degree > 1
            and sharding_configs['_dp_as_optimizer_sharding']
            and self.pp_degree > 1
        ):
265 266
            optimizer_sharding = True

W
WangXi 已提交
267 268 269
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
270
        self._optimizer_sharding = optimizer_sharding
271 272

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
273
        self.pp_allreduce_in_optimize = sharding_configs[
274 275
            "pp_allreduce_in_optimize"
        ]
276

277 278 279
    def _inner_opt_minimize(
        self, loss, startup_program, parameter_list, no_grad_set
    ):
W
WangXi 已提交
280 281
        pipeline_configs = self.user_defined_strategy.pipeline_configs

282 283
        if self.inner_opt is None:
            raise ValueError(
284 285
                "self.inner_opt of ShardingOptimizer should not be None."
            )
286 287

        if self.pp_degree > 1:
W
wangxiaoning 已提交
288
            pp_optimizer = PipelineOptimizer(
289 290
                self.inner_opt, self._gradient_merge_acc_step
            )
W
WangXi 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
307
                'scale_gradient': self.scale_gradient,
W
WangXi 已提交
308
            }
309 310
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
311

312 313 314 315 316 317 318 319 320
            (
                optimize_ops,
                params_grads,
                program_list,
                self.pipeline_pair,
                self.pp_ring_map,
            ) = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set
            )
W
WangXi 已提交
321
            assert self.pp_degree == len(program_list)
322 323
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
324 325
                loss, startup_program, parameter_list, no_grad_set
            )
326 327 328

        if startup_program is None:
            startup_program = default_startup_program()
329 330 331

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
332
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
333
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
334 335 336
                main_program = program_list[
                    int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
                ]
L
lilong12 已提交
337 338
            else:
                main_program = program_list[self.pp_rank]
339 340 341 342 343 344 345 346 347 348 349
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

350 351 352 353
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

354 355 356 357 358
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
359
        return optimize_ops, params_grads
360

W
WangXi 已提交
361
    def _apply_sharding_pass(self, params_grads):
362 363
        if self.sharding_degree == 1:
            return
W
WangXi 已提交
364 365 366

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
367

W
WangXi 已提交
368
        # step1: build shard
369 370 371
        self._build_shard(
            params_grads, self.sharding_rank, self.sharding_degree
        )
372

W
WangXi 已提交
373 374
        # step2: split_program
        self._split_program(main_block)
375

W
WangXi 已提交
376 377 378 379
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
380

W
WangXi 已提交
381
        # step4: remove unneeded ops and vars from block
382
        self._prune_main_program(
383 384 385 386
            main_block,
            self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id],
        )
387 388 389
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
390 391 392
        """outer dp as optimizer sharding"""
        if self._optimizer_sharding is False:
            return
393 394 395

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
396

397 398 399 400 401 402 403 404 405
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
406 407 408 409
            main_block,
            self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id],
        )
410 411 412
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
413 414
        if self.pp_degree == 1:
            return
415

W
WangXi 已提交
416
        strategy = self.user_defined_strategy
417
        sharding_configs = strategy.sharding_configs
418

W
WangXi 已提交
419 420 421 422 423 424 425 426 427 428 429 430
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
431 432
                        main_block._remove_op(idx)

W
WangXi 已提交
433
            for idx, op in reversed(list(enumerate(main_block.ops))):
434 435
                if op.type != 'cast':
                    continue
W
WangXi 已提交
436
                in_name = op.input_arg_names[0]
437 438 439
                if in_name not in self._params:
                    continue
                # if self._shard.has_param(param_name): continue
W
WangXi 已提交
440 441 442
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

443 444 445 446 447
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
448
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
449 450
            main_block, strategy=strategy, shard=shard
        )
451 452

        len_of_ops = len(main_block.ops)
453 454
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
455 456
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
457
        if self.pp_allreduce_in_optimize:
458
            logger.info(
459
                f"Pipeline Persistable grad is {accumulated_grad_names}"
460
            )
461 462 463 464
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
465 466 467 468 469 470
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
471
                use_calc_stream=True,
472 473
                rank=self.sharding_rank,
            )
474

475
            logger.info(f"PP-Sharding grad is {accumulated_grad_names}")
476
            first_optimize_op_index += len(main_block.ops) - len_of_ops
477 478
            len_of_ops = len(main_block.ops)

479 480 481 482 483 484 485 486 487 488
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
489 490
                strategy=strategy,
            )
491
            logger.info(f"Optimizer grad in this rank {accumulated_grad_names}")
492
            first_optimize_op_index += len(main_block.ops) - len_of_ops
493 494
            len_of_ops = len(main_block.ops)

495 496
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
497 498 499
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
500 501
                self.dp_ring_id,
                [x[0].name for x in params_grads],
502 503 504 505
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
506 507
                strategy=None if optimize_cast else strategy,
            )
508
            logger.info(f"Optimizer param in this rank {optimizer_param}")
509
            if not strategy.fuse_grad_merge and not optimize_cast:
510 511
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
512 513 514 515 516 517 518
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
519 520 521
                user_defined_strategy=strategy,
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
522 523 524
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
525

526
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
527 528 529 530 531 532
        if (
            self.user_defined_strategy.amp
            and self.user_defined_strategy.amp_configs[
                'use_dynamic_loss_scaling'
            ]
        ):
533 534 535 536 537 538 539 540 541 542
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
543 544
                        dtype=loss_scaling_var.dtype,
                    )
545 546 547 548 549 550 551 552 553
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
554 555 556
                            OP_ROLE_KEY: OpRole.Optimize,
                        },
                    )
557 558 559 560 561 562 563 564 565 566
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
567 568 569
            assert (
                tmp_first_opt_idx is not None
            ), 'Occurs some errors, no optimize ops'
570 571 572 573 574 575 576 577 578 579
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
580 581 582
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
583

W
WangXi 已提交
584
    def _adapt_amp_clip_without_sharding(self):
585 586
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
587 588 589 590
        if self.sharding_degree > 1:
            return
        if self._optimizer_sharding:
            return
591

W
WangXi 已提交
592 593 594 595
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
596

597 598
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
K
Kim Yann 已提交
599
        if core.is_compiled_with_custom_device('npu'):
600 601
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
602

W
WangXi 已提交
603
        gradientclip_helper = GradientClipHelper(None)
604 605 606
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id], self.mp_rank
        )
W
WangXi 已提交
607 608 609 610 611

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
612 613 614
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
615
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
616

617 618
        main_block._sync_with_cpp()

619
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
620 621 622 623 624
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

625
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
626
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
627 628 629
        offload_helper = OffloadHelper(
            mp_ring_id=mp_ring_id, dp_ring_id=dp_ring_id
        )
630

W
WangXi 已提交
631 632 633 634
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
635
            logger.info("Sharding with optimize offload !")
636
            offload_helper.offload(main_block, startup_block)
637
            # The optimize_cast is already included in offload_fp32param
638
            offload_helper.offload_fp32param(main_block, startup_block)
639 640 641 642
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
643 644
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
645 646
                    main_block, startup_block, [x[0].name for x in params_grads]
                )
647
                # NOTE(wangxi): fused after optimize_cast
648 649 650
                utils.fuse_opt_broadcast_param_ops(
                    main_block, dp_ring_id, self._shard, strategy=strategy
                )
651
            else:
652
                offload_helper.cast_fp32param_in_optimize(
653 654
                    main_block, startup_block
                )
655

W
WangXi 已提交
656 657 658
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
659 660 661
        with open(
            "start_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
662
            f.writelines(str(startup_block.program))
663 664 665
        with open(
            "main_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
666 667
            f.writelines(str(main_block.program))

668 669 670
    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
W
WangXi 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
685 686
            loss, startup_program, parameter_list, no_grad_set
        )
W
WangXi 已提交
687 688 689 690 691

        self._init_comm()

        self._apply_sharding_pass(params_grads)

692 693 694
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
695 696 697 698 699 700

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

701
        # apply optimize offload or optimize cast
702
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
703

704
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
705
        self._sharding_gradient_merge()
706 707 708 709 710 711

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
712

W
WangXi 已提交
713 714 715
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
716

717 718 719 720
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
721
        self._dump_program_for_debug()
722

723
        # GPU need to wait server ready, GPU and NPU is Layered connection
K
Kim Yann 已提交
724
        if not core.is_compiled_with_custom_device('npu'):
725
            self._wait()
726 727
        return optimize_ops, params_grads

728 729 730 731 732 733
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
734
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
735 736 737 738 739 740 741 742 743
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                pp_group_endpoints,
                pp_rank,
                ring_id,
                False,
                sync=False,
            )
744 745 746 747 748 749 750 751 752 753 754

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
755
            logger.info(f"pp pair:{pair}, ring_id: {ring_id}")
756 757 758 759 760

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
761 762 763 764
        send_to_next_pair = (
            self.pp_rank,
            (self.pp_rank + 1) % self.pp_degree,
        )  # 2->3
765
        recv_from_next_pair = (
766 767 768
            (self.pp_rank + 1) % self.pp_degree,
            self.pp_rank,
        )  # 3->2
769
        recv_from_prev_pair = (
770 771
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
            self.pp_rank,
772
        )  # 1->2
773 774 775 776
        send_to_prev_pair = (
            self.pp_rank,
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
        )  # 2->1
777 778 779 780 781 782 783 784

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
785
        logger.info(f"pair0(even->odd): pp pair:{pair}, ring_id: {ring_id}")
786 787 788 789 790 791

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
792
        logger.info(f"pair1(even<-odd): pp pair:{pair}, ring_id: {ring_id}")
793 794 795 796 797

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
798 799 800
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 1
            )  # 3->0 not in pp_ring_map
801 802 803
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
804 805 806 807 808
            logger.info(
                "pair2(odd->even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
809 810 811

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
812 813 814
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 2
            )  # 0->3 not in pp_ring_map
815 816 817
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
818 819 820 821 822
            logger.info(
                "pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
823

824 825 826 827
        assert len(my_pair) == 0, (
            "Current pipeline does not support cross stage communication, "
            "please check unexpected pair {}".format(my_pair)
        )
828 829 830

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
831
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
832 833 834 835 836 837 838 839 840
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.pp_group_endpoints,
                self.pp_rank,
                self.pp_ring_id,
                False,
                sync=False,
            )
841

K
Kim Yann 已提交
842
        if core.is_compiled_with_custom_device('npu'):
843 844 845 846 847 848 849
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
850
            logger.info(f"pp pair:{pair}, ring_id: {ring_id}")
851 852 853
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

854
    def _init_comm(self):
855
        # sync var
856 857
        startup_block = self._startup_program.global_block()

858
        # mp ring
859
        if self.mp_degree > 1:
860 861 862 863 864 865 866 867 868
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False,
            )
869

870
        # sharding ring
871 872 873 874 875 876 877 878
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
879 880
                sync=False,
            )
881

882 883
        # pp ring
        if self.pp_degree > 1:
884
            self._init_pipeline_comm(startup_block)
885 886

        # pure dp ring
887
        if self.dp_degree > 1:
888 889 890 891 892 893 894 895 896
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False,
            )
897

898 899
        startup_block._sync_with_cpp()

900
    def _build_shard(self, params_grads, shard_rank, shard_size):
901
        # step 2: split params
902
        self._params = {x[0].name for x in params_grads}
903
        self._shard.setup(params_grads, shard_rank, shard_size)
904 905 906

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
907 908
            self._main_program.global_block()
        )
909

910 911 912
    def _wait(
        self,
    ):
913 914 915
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
916 917
            self._collective_helper._wait(current_endpoint, endpoints)

918 919 920 921 922 923 924 925
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

926 927 928 929 930
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
931

932
        var2broadcast_time = {}
933 934 935 936
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
937
            assert int(op.attr('op_role')) != int(OpRole.Optimize)
938 939 940 941 942 943 944 945 946 947 948 949 950
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
951 952 953
                                input_name = input_name[
                                    : input_name.find(".cast_fp16@GRAD")
                                ]
954 955

                        if input_name in self._backward_remain_anchors:
956
                            segment = self.collect_segment(
957 958 959 960 961 962 963
                                segment, op_idx, block
                            )
                            assert (
                                input_name not in self._forward_remain_anchors
                            ), "segment anchor [{}] met twice !".format(
                                input_name
                            )
964 965 966 967 968
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
969
                            segment = self.collect_segment(
970 971
                                segment, op_idx, block
                            )
972
                            self._forward_remain_anchors.remove(output_name)
973 974 975 976 977 978 979 980 981 982 983 984 985 986

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
987 988 989
                    broadcast_var_name = unique_name.generate(
                        input_name + "@BroadCast"
                    )
990
                    segment._fill_constant_vars.append(broadcast_var_name)
991 992 993 994 995

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
996 997 998
                    broadcast_var_base_name = broadcast_var_base_name[
                        : broadcast_var_base_name.find(".subprog")
                    ]
999

1000 1001 1002
                var2broadcast_time[broadcast_var_base_name] = (
                    var2broadcast_time.get(broadcast_var_base_name, 0) + 1
                )
1003

1004
                segment._param2broadcast[input_name] = broadcast_var_name
1005
                segment._broadcast_vars.append(
1006 1007
                    (broadcast_var_name, self._shard.device(input_name))
                )
1008
                segment._param_mem += get_var_size(
1009 1010
                    self._main_program.global_block().var(input_name)
                )
1011 1012

            # find reduce vars
1013 1014 1015 1016
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
1017
                if is_backward_op(op) and OP_ROLE_VAR_KEY in op.attr_names:
1018 1019 1020 1021
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
1022 1023 1024 1025
                            param, reduced_grad = (
                                op_role_var[i],
                                op_role_var[i + 1],
                            )
1026
                            segment._allreduce_vars.append(reduced_grad)
1027 1028 1029
                            assert (
                                reduced_grad not in self._reduced_grads_to_param
                            )
1030
                            self._reduced_grads_to_param[reduced_grad] = param
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
1042 1043

        if self._sharding_segment_strategy == "segment_anchors":
1044 1045
            assert (
                len(self._forward_remain_anchors) == 0
1046
            ), f"remain anchors {self._forward_remain_anchors}"
1047 1048
            assert (
                len(self._backward_remain_anchors) == 0
1049
            ), f"remain anchors {self._backward_remain_anchors}"
1050 1051

        if self._verbose:
1052 1053 1054 1055 1056 1057 1058 1059
            for varname in sorted(
                var2broadcast_time, key=var2broadcast_time.get, reverse=True
            ):
                logger.info(
                    "Sharding broadcast: [{}] times [{}]".format(
                        var2broadcast_time[varname], varname
                    )
                )
1060
            for idx_ in range(len(self._segments)):
1061
                logger.info(f"segment [{idx_}] :")
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                logger.info(
                    "start op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._start_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._start_idx
                        ].desc.input_arg_names(),
                    )
                )
                logger.info(
                    "end   op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._end_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._end_idx
                        ].desc.input_arg_names(),
                    )
                )
1078 1079
        return

1080
    def _prune_main_program(self, block, shard, rings):
1081 1082 1083
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
1084 1085 1086 1087 1088

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
1089

1090 1091
        """
        weightdecay_helper = WeightDecayHelper()
1092
        weightdecay_helper.prune_weight_decay(block, shard)
1093 1094

        # FIXME(wangxi): mp should prune duplicated param_grads
1095 1096 1097
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
1098
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
1099

1100
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
1101
        gradientclip_helper = GradientClipHelper(None)
1102
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
1103 1104 1105 1106 1107 1108

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
1109
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
1110 1111 1112 1113 1114
            if (
                op.type == "c_allreduce_sum"
                and op.attr('use_model_parallel') is False
            ):
                assert len(output_names) == 1
1115 1116 1117
                output_name = output_names[0]
                reduced_grads.append(output_name)

1118
        # prune optimizer state and param
1119 1120
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
1121
            if shard.is_opti_var(var_name) and not shard.has_opt_var(var_name):
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1132 1133 1134 1135
                "c_allreduce_sum",
                "c_sync_comm_stream",
                "c_calc_comm_stream",
                "c_gen_nccl_id",
1136
                "c_gen_bkcl_id",
1137 1138 1139
                "c_comm_init",
                'send_v2',
                'recv_v2',
1140 1141 1142
            ]:
                pass
            elif op.type == "conditional_block":
1143
                assert op.desc.has_attr("sub_block")
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
1159 1160
                    list(enumerate(subblock_deps._block.ops))
                ):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1172 1173
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1174
                if program_deps.should_remove_op(idx):
1175
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
1176 1177 1178
                    reserved_vars = (
                        self._params if self._optimizer_sharding else None
                    )
1179
                    program_deps.remove_op(idx, reserved_vars)
1180

1181
        # NOTE (JZ-LIANG) revise and unify logic here
1182
        # sharding support fp16_allreduce logic
1183 1184 1185 1186 1187 1188
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
1189 1190
                    if block.has_var(var_name):
                        reserved_x.append(var_name)
1191
                op.desc.set_input('X', reserved_x)
1192 1193 1194 1195 1196
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1197 1198
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1199

1200
        if combined with pipeline(grad accumulate),
1201
        the grad allreduce should be done in optimize role
1202 1203 1204
        """
        if len(self._segments) < 1:
            return
1205
        # sharding
1206 1207 1208 1209 1210 1211 1212
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
1213 1214 1215 1216 1217
        for idx in range(
            self._segments[-1]._end_idx - 1,
            self._segments[-1]._start_idx - 1,
            -1,
        ):
1218 1219
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
1220 1221
                if "MERGED" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1222
            elif op.type == "cast":
1223 1224
                if "@TMP" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1225 1226
        self._segments[-1]._end_idx = new_end_idx

1227
        if self._segments[-1]._allreduce_vars:
1228
            shard_allredue_vars = self._shard.filter_grads(
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
                self._segments[-1]._allreduce_vars
            )
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1246 1247 1248 1249 1250
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1251 1252
                        user_defined_strategy=self.user_defined_strategy,
                    )
1253
            # gradient merge
1254 1255 1256 1257
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1258
                self.create_persistable_gradients_and_insert_merge_ops(
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx,
                    shard_allredue_vars,
                    self._shard,
                )

            insert_sync_comm_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
            )
1272
            # allreduce --> reduce
1273 1274 1275 1276 1277 1278 1279 1280 1281
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False,
            )
1282 1283

        for idx, segment in reversed(list(enumerate(self._segments))):
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
            allreduce_vars = (
                self._segments[idx - 1]._allreduce_vars if idx > 0 else []
            )
            broadcast_vars = (
                self._segments[idx + 1]._broadcast_vars
                if idx < len(self._segments) - 1
                else []
            )
            fill_constant_vars = (
                self._segments[idx + 2]._fill_constant_vars
                if idx < len(self._segments) - 2
                else []
            )
            cast_ops = (
                self._segments[idx + 2]._cast_ops
                if idx < len(self._segments) - 2
                else {}
            )
1302 1303 1304 1305

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
1306 1307 1308 1309 1310 1311 1312
                    if (
                        input_name in segment._param2broadcast
                        and input_name != segment._param2broadcast[input_name]
                    ):
                        op._rename_input(
                            input_name, segment._param2broadcast[input_name]
                        )
1313 1314 1315 1316 1317

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
1318 1319 1320 1321 1322 1323 1324 1325
                        shape=self._main_program.global_block()
                        .var(param_name)
                        .shape,
                        dtype=self._main_program.global_block()
                        .var(param_name)
                        .dtype,
                        persistable=False,
                    )
1326 1327 1328

            # step1: remove cast ops
            block._sync_with_cpp()
1329
            segment._end_idx += FP16Utils.remove_cast_op(
1330 1331
                block, self._params, segment, 0
            )
1332 1333

            # step2: add Sync ops
1334 1335
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1351 1352 1353

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
1354 1355 1356 1357 1358 1359
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            broad_cast_vars,
                        )
1360 1361 1362 1363 1364
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
1365 1366 1367 1368 1369 1370
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            comm_dep_vars,
                        )
1371
            # gradient merge
1372 1373 1374 1375
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1376 1377
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
1378 1379 1380 1381 1382 1383
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.sharding_ring_id,
                        broad_cast_vars,
                    )
1384

1385 1386 1387 1388 1389
            calc_dep_vars = (
                fill_constant_vars
                + [k for k, v in cast_ops.items()]
                + self._segments[idx]._allreduce_vars
            )
1390 1391

            if len(calc_dep_vars) > 0:
1392 1393 1394
                insert_sync_calc_op(
                    block, segment._end_idx, [calc_dep_vars[-1]]
                )
1395

1396
            # step3: insert `fill_constant` ops
1397 1398 1399
            insert_fill_constant_ops(
                block, segment._end_idx, fill_constant_vars
            )
1400

1401
            # step4: add `cast` ops
1402 1403 1404
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1405
            # gradient merge
1406 1407 1408 1409
            if (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1410
                self.create_persistable_gradients_and_insert_merge_ops(
1411 1412 1413 1414 1415 1416
                    block,
                    self._startup_program.global_block(),
                    segment._start_idx,
                    shard_allredue_vars,
                    self._shard,
                )
1417

1418 1419 1420
            insert_broadcast_ops(
                block, segment._start_idx, self.sharding_ring_id, broadcast_vars
            )
1421

1422
            # step6: add all_reduce ops
1423
            # dp
1424 1425 1426 1427 1428 1429 1430 1431 1432
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
1433 1434 1435 1436 1437
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1438 1439 1440 1441 1442 1443 1444 1445
                        user_defined_strategy=self.user_defined_strategy,
                    )
                    insert_sync_comm_ops(
                        block,
                        segment._start_idx,
                        self.sharding_ring_id,
                        allreduce_vars,
                    )
1446
            # gradient merge
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
                insert_sync_comm_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                )
1457
            # sharding
1458
            # allreduce --> reduce
1459 1460
            # TODO temp change
            if len(allreduce_vars) > 0:
1461 1462 1463 1464 1465 1466 1467 1468 1469
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False,
                )
1470 1471 1472 1473

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1474
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
            insert_sync_comm_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                broadcast_vars,
            )
            insert_broadcast_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                self._segments[0]._broadcast_vars,
            )
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
1500 1501 1502
            insert_sync_calc_op(
                block, self._segments[0]._start_idx, [calc_deps_vars[-1]]
            )
1503 1504

        if fill_constant_vars:
1505 1506 1507
            insert_fill_constant_ops(
                block, self._segments[0]._start_idx, fill_constant_vars
            )
1508 1509 1510 1511 1512 1513

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1514
    def _prune_startup_program(self, block, shard):
1515 1516
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1517 1518 1519
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1520
                    continue
1521
                # TODO why do we remove op, when only one var is removed
1522 1523 1524 1525
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1526 1527 1528
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1529 1530 1531
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1532

1533
    def _build_groups(self):
1534 1535
        """
        pre-assign ring ids
1536 1537 1538 1539
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1540 1541
            pp: 4
            pp-pair: >= 20
1542
        if one parallelism is not enable: -1
1543
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1544 1545 1546 1547 1548 1549
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding
        )
        assert (
            self.global_word_size % self.mp_degree == 0
        ), "global_word_size: {} should be divisible to the mp_degree: {}".format(
            self.global_word_size, self.mp_degree
        )
        assert (
            self.global_word_size % self.sharding_degree == 0
        ), "global_word_size: {} should be divisible to the sharding_degree: {}".format(
            self.global_word_size, self.sharding_degree
        )
        assert (
            self.global_word_size % self.pp_degree == 0
        ), "global_word_size: {} should be divisible to the pp_degree: {}".format(
            self.global_word_size, self.pp_degree
        )
        assert (
            self.global_word_size % self.dp_degree == 0
        ), "global_word_size: {} should be divisible to the dp_degree: {}".format(
            self.global_word_size, self.dp_degree
        )
1573 1574 1575 1576 1577 1578 1579

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
1580 1581
                ep
                for idx, ep in enumerate(self.global_endpoints)
1582
                if idx // self.mp_degree == self.mp_group_id
1583
            ]
1584
            assert self.current_endpoint in self.mp_group_endpoints
1585 1586 1587 1588 1589
            assert (
                len(self.mp_group_endpoints) == self.mp_degree
            ), "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree
            )
1590 1591 1592 1593 1594 1595 1596
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1597
        # sharding
1598 1599
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
1600 1601 1602 1603 1604 1605
            self.sharding_rank = (
                self.global_rank // self.mp_degree
            ) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree
            )
1606 1607 1608
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
1609 1610 1611 1612 1613
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
                    and idx % self.mp_degree == self.mp_rank
1614
                ]
1615
            # sharding + ...
1616 1617
            else:
                self.sharding_group_endpoints = [
1618 1619 1620 1621
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
1622 1623 1624 1625 1626 1627 1628 1629 1630
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1631 1632
        # pp
        if self.pp_degree > 1:
1633 1634 1635
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1636 1637 1638 1639 1640
            self.pp_rank = (
                self.global_rank
                // (self.sharding_degree * self.mp_degree)
                % self.pp_degree
            )
1641 1642
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
1643 1644
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1645
            pp_first_stage_idx = self.global_rank % (
1646 1647 1648 1649
                self.sharding_degree * self.mp_degree
            ) + self.pp_group_id * (
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1650 1651 1652
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1653
                self.pp_group_endpoints.append(
1654 1655 1656 1657
                    self.global_endpoints[
                        pp_first_stage_idx + pp_stage_offset * i
                    ]
                )
1658 1659 1660
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1661 1662
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1663 1664 1665 1666
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1667 1668 1669
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1670
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1671 1672
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
            assert self.pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                self.global_word_size
                == self.mp_degree * self.sharding_degree * self.dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                self.global_word_size,
                self.mp_degree,
                self.sharding_degree,
                self.dp_degree,
            )
L
lilong12 已提交
1685 1686
            local_pp_degree = 1
        else:
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            assert (
                self.global_word_size
                == self.mp_degree
                * self.sharding_degree
                * self.pp_degree
                * self.dp_degree
            ), "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree,
                self.sharding_degree,
                self.pp_degree,
                self.dp_degree,
                self.global_word_size,
            )
1700

1701 1702
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1703
            self.dp_rank = self.global_rank // (
1704 1705
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
1706
            dp_first_rank_idx = self.global_rank % (
1707 1708 1709
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
            dp_offset = self.sharding_degree * self.mp_degree * local_pp_degree
1710 1711
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1712
                self.dp_group_endpoints.append(
1713 1714
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i]
                )
1715
            assert self.current_endpoint in self.dp_group_endpoints
1716
            logger.info("Hybrid DP mode turn on !")
1717 1718 1719
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1720
            self.dp_group_endpoints = []
1721

1722
        # global group
1723 1724
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1725
        self.global_ring_id = 3
1726

1727 1728 1729 1730
        logger.info(f"global word size: {self.global_word_size}")
        logger.info(f"global rank: {self.global_rank}")
        logger.info(f"global endpoints: {self.global_endpoints}")
        logger.info(f"global ring id: {self.global_ring_id}")
1731 1732
        logger.info("#####" * 6)

1733 1734 1735 1736 1737
        logger.info(f"mp group size: {self.mp_degree}")
        logger.info(f"mp rank: {self.mp_rank}")
        logger.info(f"mp group id: {self.mp_group_id}")
        logger.info(f"mp group endpoints: {self.mp_group_endpoints}")
        logger.info(f"mp ring id: {self.mp_ring_id}")
1738 1739
        logger.info("#####" * 6)

1740 1741 1742
        logger.info(f"sharding group size: {self.sharding_degree}")
        logger.info(f"sharding rank: {self.sharding_rank}")
        logger.info(f"sharding group id: {self.sharding_group_id}")
1743
        logger.info(
1744
            f"sharding group endpoints: {self.sharding_group_endpoints}"
1745
        )
1746
        logger.info(f"sharding ring id: {self.sharding_ring_id}")
1747 1748
        logger.info("#####" * 6)

1749 1750 1751 1752 1753
        logger.info(f"pp group size: {self.pp_degree}")
        logger.info(f"pp rank: {self.pp_rank}")
        logger.info(f"pp group id: {self.pp_group_id}")
        logger.info(f"pp group endpoints: {self.pp_group_endpoints}")
        logger.info(f"pp ring id: {self.pp_ring_id}")
1754 1755
        logger.info("#####" * 6)

1756 1757 1758 1759
        logger.info(f"pure dp group size: {self.dp_degree}")
        logger.info(f"pure dp rank: {self.dp_rank}")
        logger.info(f"pure dp group endpoints: {self.dp_group_endpoints}")
        logger.info(f"pure dp ring id: {self.dp_ring_id}")
1760
        logger.info("#####" * 6)
1761 1762

        return
1763

1764 1765 1766 1767 1768 1769 1770
    def _recreate_not_persist_param_as_var(self):
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1787
                block._remove_var(name, sync=False)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                var = block.create_var(
                    name=name,
                    shape=shape,
                    dtype=dtype,
                    type=type,
                    lod_level=lod_level,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    persistable=False,
                )
1798 1799 1800
                if have_dist_attr:
                    var.is_distributed = is_distributed

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1826 1827 1828 1829 1830 1831 1832
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
1833 1834
            if param in broadcast_params:
                continue
1835 1836 1837 1838 1839 1840 1841 1842 1843

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': ring,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward,
                    },
                )
1855

1856 1857
        startup_block._sync_with_cpp()

1858 1859
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
1860 1861
        self, main_block, startup_block, insert_idx, grad_names, shard
    ):
1862 1863

        for grad_name in grad_names:
1864 1865 1866 1867 1868
            assert (
                get_grad_device(grad_name, shard) == shard.worker_idx
            ), "try to merge gradient not belong to current shard: [{}]".format(
                grad_name
            )
1869
            persistable_grad_name = grad_name + '@GradiantMerge'
1870 1871 1872 1873 1874
            assert (
                grad_name not in self._grad2merged_grad
            ), "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name
            )
1875 1876 1877 1878 1879 1880 1881
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1882 1883
                persistable=True,
            )
1884 1885 1886 1887
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1888 1889
                persistable=True,
            )
1890 1891 1892 1893 1894

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1895
                inputs={'X': grad_name, 'Y': gradient_merge_var},
1896 1897 1898 1899
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
1900 1901 1902
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
1903 1904

            # startup initialization
1905 1906 1907 1908 1909 1910 1911 1912 1913
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                },
            )
1914 1915 1916 1917 1918 1919

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
W
wangxiaoning 已提交
1920
        acc_step_var = create_global_var(
1921 1922 1923 1924 1925
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
1926 1927
            force_cpu=True,
        )
1928

W
wangxiaoning 已提交
1929
        zero_var = create_global_var(
1930 1931 1932 1933 1934 1935 1936
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
1937 1938

        # Add step var & cond var
W
wangxiaoning 已提交
1939
        current_step_var = create_global_var(
1940 1941 1942 1943 1944
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
1945 1946
            force_cpu=True,
        )
1947

1948 1949 1950
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
1951 1952 1953

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1), OP_ROLE_KEY: OpRole.Optimize},
            )

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var, 'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False,
                },
            )
1971 1972

            # cond_var = (step_var == 0)
1973 1974 1975 1976 1977 1978
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize},
            )
1979 1980 1981 1982 1983 1984 1985 1986 1987
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1988
            amp
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

2003
        # allreduce grad@gradientmerge
2004
        if self.hybrid_dp:
2005 2006 2007
            assert (
                self.dp_ring_id >= 0
            ), "dp_ring_id should larger than 0 when in sharding&DP mode"
2008 2009
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
2020 2021 2022 2023 2024

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
2046 2047
                        input_name, self._grad2merged_grad[input_name]
                    )
2048 2049 2050 2051

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
2052 2053
                        output_name, self._grad2merged_grad[output_name]
                    )
2054 2055

                # move non temp optimize vars from block0 to cond block
2056 2057 2058
                if (
                    output_name not in already_moved_var_names
                    and output_name not in self._grad2merged_grad.keys()
2059 2060 2061 2062 2063 2064 2065 2066
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
2067 2068 2069 2070 2071 2072 2073 2074
                            var_.name, sync=False
                        )
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False,
                        )
2075 2076 2077 2078 2079 2080 2081 2082
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2093 2094 2095 2096

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
2097
    def _sharding_gradient_merge(self):
2098 2099 2100 2101 2102 2103
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
2104 2105 2106 2107
        if (
            self.gradient_merge_mode != "sharding_gm"
            or self._gradient_merge_acc_step <= 1
        ):
W
WangXi 已提交
2108 2109 2110
            return

        main_block = self._main_program.global_block()
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
2126 2127
            reversed(self.original_optimize_ops_desc)
        )
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
2144 2145
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2146 2147 2148 2149 2150 2151
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
2152
            outputs={'Out': [], 'Scope': [step_scope]},
2153 2154 2155
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
2156 2157
            },
        )