framework.py 269.4 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38
from paddle.base.libpaddle import DataType
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
43
import threading
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
52
    'set_ipu_shard',
S
sneaxiy 已提交
53 54
    'cuda_places',
    'cpu_places',
55
    'xpu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58 59
    'in_new_ir_mode',
    'in_dynamic_or_new_ir_mode',
60
    'is_compiled_with_cinn',
C
chengduo 已提交
61
    'is_compiled_with_cuda',
62
    'is_compiled_with_rocm',
63
    'is_compiled_with_xpu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
    '_stride_in_no_check_dy2st_diff',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78

79 80 81 82 83 84 85 86
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
87
        self._in_to_static_mode_ = False
88 89 90 91 92
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
93
        strings.append("_in_to_static_mode_:" + str(self._in_to_static_mode_))
94 95 96 97 98 99 100 101 102 103 104
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
105
            core._switch_tracer(val)
106 107 108
        self.__dict__[name] = val


L
lujun 已提交
109
_dygraph_tracer_ = None
110 111
global_var = GlobalThreadLocal()

112
_global_expected_place_ = None
113
_current_device = None
114
global_prog_seed = 0
115
_current_pipeline_stage = None
116
_current_cuda_graph_mode = None
117
_global_flags_ = core.globals()
W
wanghuancoder 已提交
118
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
paddle_type_to_proto_type = {
    DataType.BOOL: core.VarDesc.VarType.BOOL,
    DataType.FLOAT16: core.VarDesc.VarType.FP16,
    DataType.UINT16: core.VarDesc.VarType.BF16,
    DataType.FLOAT32: core.VarDesc.VarType.FP32,
    DataType.FLOAT64: core.VarDesc.VarType.FP64,
    DataType.INT8: core.VarDesc.VarType.INT8,
    DataType.INT16: core.VarDesc.VarType.INT16,
    DataType.INT32: core.VarDesc.VarType.INT32,
    DataType.INT64: core.VarDesc.VarType.INT64,
    DataType.UINT8: core.VarDesc.VarType.UINT8,
    DataType.COMPLEX64: core.VarDesc.VarType.COMPLEX64,
    DataType.COMPLEX128: core.VarDesc.VarType.COMPLEX128,
}


K
Kim Yann 已提交
178
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
179 180 181 182
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
204
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
205 206 207 208 209

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
210
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
211 212


213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
def in_new_ir_mode():
    """

    This API checks whether paddle runs in static graph mode and use new ir api.

    Returns:
        bool: Whether paddle runs in static graph mode and use new ir api.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> print(paddle.framework.in_new_ir_mode())
            False

            >>> paddle.enable_static()
            >>> paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
            >>> print(paddle.framework.in_new_ir_mode())
            True

    """
    return ir.core._use_new_ir_api() and not in_dygraph_mode()


def in_dynamic_or_new_ir_mode():
    """

    This API checks whether paddle runs in dynamic graph or new ir mode.

    Returns:
        bool: Whether paddle runs in static graph mode and use new ir api.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            True

            >>> paddle.enable_static()
            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            False

            >>> paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            True

    """
    return in_dygraph_mode() or in_new_ir_mode()


266 267
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
268 269 270 271 272
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
273
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
274 275 276 277
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
278
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
279
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
280
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
281
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
282
            which means no pipelining computation order and run Ops in terms of graph.
283

G
gouzil 已提交
284 285 286 287 288 289 290
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


325 326 327 328
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
329 330 331 332 333
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

334 335 336 337 338
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
339
            The sharded model will be computed from small to large. The default value is -1,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

365
    from paddle.nn import Layer
366

367 368 369 370 371
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
372 373
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
374 375 376 377 378 379 380 381 382 383 384 385

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


386 387
def require_version(min_version, max_version=None):
    """
388 389 390
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
391

392 393 394 395
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
396

397 398
    Returns:
        None.
399

400 401 402 403 404 405
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
406

407 408
    Examples:
        .. code-block:: python
409

410
            import paddle.base as base
411

412
            # any version >= 0.1.0 is acceptable.
413
            base.require_version('0.1.0')
414

415
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
416
            base.require_version(min_version='0.1.0', max_version='10.0.0')
417
    """
418 419 420
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
421 422
            % (type(min_version))
        )
423 424 425 426

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
427 428
            % (type(max_version))
        )
429 430 431 432 433

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
434 435
            "like '1.5.2.0', but received %s" % min_version
        )
436 437 438 439 440 441

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
442 443
                "like '1.5.2.0', but received %s" % max_version
            )
444 445

    version_installed = [
446 447 448 449
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
450 451 452 453
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
454
        for i in range(len(ver_a)):
455 456 457 458 459 460 461 462 463 464 465
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
466 467 468
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
469 470 471 472
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
473 474 475
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
476 477 478
        return

    min_version_split = min_version.split('.')
479 480 481
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
482 483 484

    if max_version is not None:
        max_version_split = max_version.split('.')
485 486 487
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
488

489 490 491 492
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
493 494
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
495 496
                % (min_version, max_version, fluid_version.full_version)
            )
497 498 499 500 501
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
502 503
                % (min_version, fluid_version.full_version, min_version)
            )
504 505


506 507
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
508
        assert not in_dygraph_mode(), (
509 510
            "We don't support %s in dynamic graph mode" % func.__name__
        )
511 512 513 514 515 516 517
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
518
        assert in_dygraph_mode(), (
519 520 521
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
522 523 524 525 526
        return func(*args, **kwargs)

    return __impl__


527 528
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
529
        from .dygraph.base import in_to_static_mode
530

531
        assert in_dygraph_mode() or in_to_static_mode(), (
532 533 534
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
535 536 537 538 539
        return func(*args, **kwargs)

    return __impl__


540 541
def _static_only_(func):
    def __impl__(*args, **kwargs):
542
        assert not in_dygraph_mode(), (
543 544 545
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
546 547 548 549 550
        return func(*args, **kwargs)

    return __impl__


551 552 553 554 555
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


556
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
557 558
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
559 560
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
561
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
562
# same base class.
563 564 565
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
566 567
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
568
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
569
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
570 571
            % (func.__name__, func.__name__)
        )
572 573 574 575

    return __impl__


T
tangwei12 已提交
576
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
577
# in base api Layer.set_dict, Optimizer.load, in order to correct the argument without
578 579 580 581 582 583 584 585 586
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
587 588
                DeprecationWarning,
            )
589 590 591 592 593 594 595
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


596 597
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
598
static_only = wrap_decorator(_static_only_)
599
fake_interface_only = wrap_decorator(_fake_interface_only_)
600
non_static_only = wrap_decorator(_non_static_only_)
601 602


L
lujun 已提交
603
def _dygraph_tracer():
604
    return global_var._dygraph_tracer_
605

W
Wu Yi 已提交
606

607 608 609 610
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
611
def _current_expected_place():
612 613 614
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
615 616 617 618 619
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
620
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
621 622 623 624 625
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
626 627 628 629 630 631
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
632
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
633 634 635 636 637
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
653 654 655 656 657 658 659
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
660 661
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
662 663 664 665 666


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
667
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
668 669


S
sneaxiy 已提交
670
def _cpu_num():
671
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
672 673 674 675 676 677 678
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
679 680 681
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
682
        os.environ['CPU_NUM'] = str(1)
683
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
684 685 686 687 688 689 690 691
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
692
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
693
    return device_ids
S
sneaxiy 已提交
694 695


696 697 698 699 700
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
701
        device_ids = range(core.get_xpu_device_count())
702 703 704
    return device_ids


705 706 707 708 709 710 711 712 713
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


714 715 716 717 718 719 720 721 722
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

723 724
            import paddle.base as base
            support_xpu = base.is_compiled_with_xpu()
725 726 727 728
    """
    return core.is_compiled_with_xpu()


729 730 731 732 733 734 735
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
736

737 738 739 740 741 742
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
743 744
    Returns:
        None
745 746 747 748 749 750 751 752 753 754

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


755 756 757 758
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

759 760
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
761 762 763 764 765 766 767 768 769 770

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
771 772 773 774
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

775 776
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
777 778 779 780

    Examples:
        .. code-block:: python

781
            import paddle
782
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
783 784 785 786
    """
    return core.is_compiled_with_cuda()


787 788 789 790
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

791 792
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
793 794 795 796 797

    Examples:
        .. code-block:: python

            import paddle
798
            support_gpu = paddle.device.is_compiled_with_rocm()
799 800 801 802
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
803
def cuda_places(device_ids=None):
L
lujun 已提交
804
    """
805
    Note:
806 807 808
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
809
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
810 811

    If :code:`device_ids` is None, environment variable of
812
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
813
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
814
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
815
    If :code:`FLAGS_selected_gpus` is not set, all visible
816
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
817 818

    If :code:`device_ids` is not None, it should be the device
819
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
820
    the returned list would be
C
Chen Weihang 已提交
821
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
822

823
    Parameters:
824
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
825 826

    Returns:
C
Chen Weihang 已提交
827
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
828 829

    Examples:
830

L
lujun 已提交
831 832
        .. code-block:: python

C
Chen Weihang 已提交
833 834
            import paddle
            import paddle.static as static
T
tangwei12 已提交
835

836
            # required: gpu
837

C
Chen Weihang 已提交
838 839 840
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
841 842

    """
843
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
844
    if device_ids is None:
C
chengduo 已提交
845
        device_ids = _cuda_ids()
S
sneaxiy 已提交
846 847 848 849 850
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


851 852 853 854
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
855 856 857 858 859 860 861 862 863
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
864
        the returned list would be
S
sunzhongkai588 已提交
865
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
866

867 868 869 870 871 872
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
873

874 875
            # required: xpu

876 877
            import paddle
            import paddle.static as static
878

879 880 881
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
882
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
883 884 885 886 887 888 889
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
890
def cpu_places(device_count=None):
L
lujun 已提交
891
    """
C
Chen Weihang 已提交
892
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
893

S
add doc  
sneaxiy 已提交
894
    If :code:`device_count` is None, the device count would
895
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
896 897
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
898 899
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
900

901 902
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
903 904

    Returns:
C
Chen Weihang 已提交
905
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
906 907

    Examples:
908

L
lujun 已提交
909 910
        .. code-block:: python

C
Chen Weihang 已提交
911 912
            import paddle
            import paddle.static as static
T
tangwei12 已提交
913

C
Chen Weihang 已提交
914 915 916
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
917 918
    """

S
sneaxiy 已提交
919 920 921 922 923 924
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
925
    """
926
    This function creates a list of :code:`base.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
927 928

    If :code:`device_count` is None, the device count would
929
    be determined by environment variable :code:`CPU_NUM`.
930 931 932 933
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
934

935 936
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
937 938

    Returns:
939
        list of base.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
940 941 942 943

    Examples:
        .. code-block:: python

944 945
            import paddle.base as base
            cuda_pinned_places_cpu_num = base.cuda_pinned_places()
L
lujun 已提交
946
            # or
947
            cuda_pinned_places = base.cuda_pinned_places(1)
L
lujun 已提交
948 949

    """
950
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
951
    if device_count is None:
952 953
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
954 955


956
class NameScope:
957 958 959 960 961 962 963 964 965 966
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
967 968 969
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
970 971 972 973 974 975 976 977 978 979 980 981 982
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
983
@signature_safe_contextmanager
984 985
def name_scope(prefix=None):
    """
986

987
    Generate hierarchical name prefix for the operators in Static Graph.
988

989
    Note:
T
Tao Luo 已提交
990 991
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
992
        Don't use it in dygraph, since it will cause memory leak.
993 994

    Args:
T
Tao Luo 已提交
995
        prefix(str, optional): prefix. Default is none.
996 997

    Examples:
998

999
        .. code-block:: python
T
Tink_Y 已提交
1000

1001 1002 1003
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1004
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1005
             b = a + 1
1006
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1007
                c = b * 1
1008
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1009
                d = c / 1
1010 1011 1012
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1013 1014
                g = f - 1

1015
          # Op are created in the default main program.
1016
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1032 1033
    """
    # TODO(panyx0718): Only [0-9a-z].
1034
    # in dygraph we don't need namescope since it will cause mem leak
1035
    if in_dygraph_mode():
L
Leo Chen 已提交
1036 1037
        yield
    else:
T
tianshuo78520a 已提交
1038
        assert prefix, "namescope prefix can not be empty."
1039 1040
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1041 1042 1043 1044
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1057 1058
def generate_control_dev_var_name():
    import random
1059

W
Wu Yi 已提交
1060
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1061 1062 1063 1064


def grad_var_name(var_name):
    """
1065 1066
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1067 1068 1069
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1070

1071
def convert_np_dtype_to_dtype_(np_dtype):
1072
    """
1073
    Convert the data type in numpy to the data type in Paddle.
1074

1075
    Args:
1076 1077
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1078

1079
    Returns:
1080
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1081 1082

    """
1083 1084
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1085 1086 1087
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    if dtype == np.float32:
        return core.VarDesc.VarType.FP32
    elif dtype == np.float64:
        return core.VarDesc.VarType.FP64
    elif dtype == np.float16:
        return core.VarDesc.VarType.FP16
    elif dtype == np.int32:
        return core.VarDesc.VarType.INT32
    elif dtype == np.int16:
        return core.VarDesc.VarType.INT16
    elif dtype == np.int64:
        return core.VarDesc.VarType.INT64
    elif dtype == np.bool_:
        return core.VarDesc.VarType.BOOL
    elif dtype == np.uint16:
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1115
    else:
1116
        raise ValueError("Not supported numpy dtype %s" % dtype)
1117 1118 1119


def dtype_is_floating(dtype):
1120 1121 1122
    """
    Check the data type is floating or not.
    Args:
1123
        dtype(np.dtype|core.VarDesc.VarType): data type.
1124 1125 1126 1127 1128
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1129
    if not isinstance(dtype, core.VarDesc.VarType):
1130 1131
        dtype = convert_np_dtype_to_dtype_(dtype)

1132
    return dtype in [
1133 1134 1135
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1136
    ]
1137 1138


Y
Yang Yang(Tony) 已提交
1139
def _debug_string_(proto, throw_on_error=True):
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1151
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1152
    if not proto.IsInitialized(error_fields) and throw_on_error:
1153 1154
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1155 1156 1157
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1158 1159 1160
    return proto.__str__()


1161
def _create_tensor(
1162 1163 1164 1165 1166
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1167
    **kwargs,
1168
):
1169 1170 1171 1172
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1182 1183


1184 1185 1186 1187 1188 1189 1190
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1191 1192
    if not vals:
        return False
1193 1194 1195
    return all(isinstance(v, expected_type) for v in vals)


1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1291 1292 1293 1294 1295
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1296
            return issubclass(t, core.eager.Tensor)
1297 1298 1299 1300 1301 1302 1303 1304 1305
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1306
            return issubclass(t, EagerParamBase)
1307 1308 1309 1310
        else:
            return issubclass(t, Parameter)


1311
class Variable(metaclass=VariableMetaClass):
1312
    """
J
Jiabin Yang 已提交
1313

U
ustiniankw 已提交
1314 1315 1316 1317
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1318

1319
        In Dygraph Mode: Please use ** :ref:`api_base_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1320 1321

    In Fluid, every input and output of an OP is a variable. In most
1322
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1323 1324
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1325

1326
    There are many kinds of variables. Each kind of them has its own attributes
1327
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/base/framework/framework.proto>`_ for details.
1328

T
tianshuo78520a 已提交
1329
    Most of a Variable's member variables can be set to be None. It mean
1330
    it is not available or will be specified later.
1331

1332
    Examples:
1333 1334
        In Static Graph Mode:

1335
        .. code-block:: python
C
cyberslack_lee 已提交
1336
            :name: code-example-1
1337

1338 1339
            import paddle.base as base
            cur_program = base.Program()
1340 1341 1342 1343
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1344

1345
        In Dygraph  Mode:
1346 1347

        .. code-block:: python
C
cyberslack_lee 已提交
1348
            :name: code-example-2
1349

1350
            import paddle.base as base
1351 1352
            import numpy as np

1353 1354
            with base.dygraph.guard():
                new_variable = base.dygraph.to_variable(np.arange(10))
1355

1356 1357
    """

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1373
        **kwargs,
1374
    ):
Y
Yu Yang 已提交
1375 1376
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1377
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1378

Y
Yu Yang 已提交
1379
        if dtype is not None:
1380
            if not isinstance(dtype, core.VarDesc.VarType):
1381
                dtype = convert_np_dtype_to_dtype_(dtype)
1382

S
Steffy-zxf 已提交
1383 1384 1385 1386
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1387 1388 1389
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1390 1391
        self.belong_to_optimizer = belong_to_optimizer

1392 1393 1394
        self.error_clip = error_clip

        is_new_var = False
1395
        self.desc = self.block.desc.find_var(name.encode())
1396

1397
        if self.desc is None:
1398
            self.desc = self.block.desc.var(name.encode())
1399
            is_new_var = True
1400

1401 1402 1403
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1404 1405 1406 1407 1408
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1409

1410
        if shape is not None:
1411
            if is_new_var:
1412 1413 1414 1415 1416 1417
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1418 1419
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1420 1421
                        "matched.".format(self.name, old_shape, shape)
                    )
1422 1423 1424 1425 1426 1427
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1428 1429 1430 1431 1432 1433
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1434 1435 1436 1437 1438 1439

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1440 1441 1442 1443 1444 1445
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1446 1447 1448 1449 1450 1451
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1452 1453
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1454
                        "persistable is {2}. They are not matched".format(
1455 1456 1457
                            self.name, self.persistable, persistable
                        )
                    )
1458

1459 1460
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1461

1462 1463 1464 1465 1466 1467 1468
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1469

1470 1471
        self.block.vars[name] = self
        self.op = None
1472
        self.stop_gradient = stop_gradient
1473
        self.is_data = is_data
W
wanghuancoder 已提交
1474
        self.is_view_var = False
Y
Yu Yang 已提交
1475

1476 1477
    def detach(self):
        """
U
ustiniankw 已提交
1478

1479
        Returns a new Variable, detached from the current graph.
1480 1481
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1482

1483
        Returns:
U
ustiniankw 已提交
1484
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1485 1486 1487 1488

        Examples:
            .. code-block:: python

1489
                import paddle
1490

1491 1492 1493 1494
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1495

1496 1497
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1498

1499
        """
1500

1501 1502 1503 1504
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1505 1506 1507 1508 1509 1510

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1511 1512
            stop_gradient=True,
        )
1513

1514 1515 1516
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1517
        return output
1518

1519
    @fake_interface_only
1520
    def numpy(self):
1521
        """
J
Jiabin Yang 已提交
1522
        **Notes**:
T
tianshuo78520a 已提交
1523
            **This API is ONLY available in Dygraph mode**
1524

J
Jiabin Yang 已提交
1525
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1526 1527 1528 1529 1530

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1531
            ndarray: dtype is same as current Variable
1532 1533 1534 1535

        Examples:
            .. code-block:: python

1536 1537 1538
                import paddle.base as base
                from paddle.base.dygraph.base import to_variable
                from paddle.base.dygraph import Linear
1539 1540 1541
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1542
                with base.dygraph.guard():
1543
                    linear = Linear(32, 64)
1544
                    data = to_variable(data)
1545
                    x = linear(data)
1546 1547 1548
                    print(x.numpy())

        """
1549
        pass
1550

1551
    @non_static_only
1552
    def backward(self, retain_graph=False):
1553
        """
J
Jiabin Yang 已提交
1554
        **Notes**:
T
tianshuo78520a 已提交
1555
            **This API is ONLY available in Dygraph mode**
1556

1557
        Run backward of current Graph which starts from current Tensor.
1558

J
Jiabin Yang 已提交
1559
        Args:
1560 1561 1562 1563
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1564

J
Jiabin Yang 已提交
1565 1566
        Returns:
            NoneType: None
1567 1568 1569 1570 1571

        Examples:
            .. code-block:: python

                import numpy as np
1572 1573
                import paddle
                paddle.disable_static()
1574 1575

                x = np.ones([2, 2], np.float32)
1576 1577 1578 1579 1580 1581 1582
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1583 1584
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1585
                loss.backward()
1586 1587

        """
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1599

1600
    @fake_interface_only
1601
    def gradient(self):
1602
        """
J
Jiabin Yang 已提交
1603
        **Notes**:
T
tianshuo78520a 已提交
1604
            **This API is ONLY available in Dygraph mode**
1605 1606 1607

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1608
        Returns:
1609
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1610 1611 1612 1613

        Examples:
            .. code-block:: python

1614
                import paddle
1615
                import paddle.base as base
1616 1617
                import numpy as np

1618
                # example1: return ndarray
1619
                x = np.ones([2, 2], np.float32)
1620
                with base.dygraph.guard():
1621 1622
                    inputs2 = []
                    for _ in range(10):
1623
                        tmp = base.dygraph.base.to_variable(x)
1624 1625
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1626
                    ret2 = paddle.add_n(inputs2)
1627
                    loss2 = paddle.sum(ret2)
1628
                    loss2.backward()
1629 1630
                    print(loss2.gradient())

1631
                # example2: return tuple of ndarray
1632
                with base.dygraph.guard():
1633 1634 1635 1636 1637
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1638 1639
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
1640
                    x = base.dygraph.base.to_variable(x_data)
1641 1642 1643 1644
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1645
        """
1646
        pass
1647

1648
    @fake_interface_only
1649
    def clear_gradient(self):
1650
        """
J
Jiabin Yang 已提交
1651
        **Notes**:
T
tianshuo78520a 已提交
1652
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1653 1654

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1655

J
Jiabin Yang 已提交
1656
        Clear  (set to ``0`` ) the Gradient of Current Variable
1657 1658 1659 1660 1661 1662

        Returns:  None

        Examples:
            .. code-block:: python

1663
                import paddle
1664
                import paddle.base as base
1665 1666 1667
                import numpy as np

                x = np.ones([2, 2], np.float32)
1668
                with base.dygraph.guard():
1669 1670
                    inputs2 = []
                    for _ in range(10):
1671
                        tmp = base.dygraph.base.to_variable(x)
1672 1673
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1674
                    ret2 = paddle.add_n(inputs2)
1675
                    loss2 = paddle.sum(ret2)
1676
                    loss2.backward()
1677 1678 1679 1680 1681
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1682
        pass
X
Xin Pan 已提交
1683

1684
    def register_hook(self, hook):
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1702

1703
    def __str__(self):
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1720 1721
                import paddle
                import paddle.static as static
1722

1723 1724 1725
                paddle.enable_static()

                cur_program = static.Program()
1726 1727 1728 1729 1730 1731
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1732 1733
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1734 1735 1736 1737
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1738
            dtype_str = str(self.dtype).split('.')[1]
1739 1740 1741 1742 1743 1744 1745
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1746
        else:
1747
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1748

1749
        if self.is_parameter:
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1760
        from paddle.distributed.auto_parallel.static.dist_context import (
1761 1762 1763
            get_default_distributed_context,
        )

1764
        dist_context = get_default_distributed_context()
1765 1766
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1767 1768 1769
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1770

1771
        return var_str
Y
Yang Yang(Tony) 已提交
1772

F
update  
fengjiayi 已提交
1773
    def to_string(self, throw_on_error, with_details=False):
1774 1775 1776
        """
        Get debug string.

J
Jiabin Yang 已提交
1777 1778 1779 1780 1781
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1782

1783 1784
        Returns:
            str: The debug string.
1785 1786 1787 1788

        Examples:
            .. code-block:: python

1789
                import paddle.base as base
1790
                import paddle
1791

1792
                paddle.enable_static()
1793
                cur_program = base.Program()
1794 1795 1796 1797
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1798
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1799
                print("=============with detail===============")
1800
                print(new_variable.to_string(True, True))
1801
        """
1802
        assert isinstance(throw_on_error, bool) and isinstance(
1803 1804
            with_details, bool
        )
1805
        protostr = self.desc.serialize_to_string()
1806
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1807 1808
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1809
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1810
            for attr_name in additional_attr:
1811
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1812

F
update  
fengjiayi 已提交
1813
        return res_str
1814 1815 1816

    __repr__ = __str__

1817 1818 1819
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1844
    @property
1845
    def stop_gradient(self):
J
Jiabin Yang 已提交
1846 1847 1848
        """
        Indicating if we stop gradient from current Variable

1849
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1850 1851 1852 1853

        Examples:
          .. code-block:: python

1854
            import paddle.base as base
J
Jiabin Yang 已提交
1855 1856
            import numpy as np

1857
            with base.dygraph.guard():
J
Jiabin Yang 已提交
1858 1859 1860
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1861 1862 1863 1864 1865
                linear = base.Linear(13, 5, dtype="float32")
                linear2 = base.Linear(3, 3, dtype="float32")
                a = base.dygraph.to_variable(value0)
                b = base.dygraph.to_variable(value1)
                c = base.dygraph.to_variable(value2)
1866 1867
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1868
                out1.stop_gradient = True
1869
                out = base.layers.concat(input=[out1, out2, c], axis=1)
J
Jiabin Yang 已提交
1870 1871
                out.backward()

1872
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1873 1874
                assert (out1.gradient() == 0).all()
        """
1875
        return self.desc.stop_gradient()
1876

1877 1878
    @stop_gradient.setter
    def stop_gradient(self, s):
1879
        self.desc.set_stop_gradient(s)
1880

1881 1882
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1883 1884 1885 1886 1887 1888 1889 1890
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1891
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1892 1893 1894 1895

        Examples:
          .. code-block:: python

1896 1897
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1898 1899 1900 1901 1902 1903
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1904
        return self.desc.persistable()
1905

Y
Yu Yang 已提交
1906 1907
    @persistable.setter
    def persistable(self, p):
1908
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1935 1936
    @property
    def name(self):
J
Jiabin Yang 已提交
1937 1938 1939
        """
        Indicating name of current Variable

1940
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1941 1942 1943 1944

        Examples:
          .. code-block:: python

1945 1946
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1953
        return self.desc.name()
Y
Yu Yang 已提交
1954

1955 1956 1957 1958 1959 1960
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1961 1962
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1963

1964 1965 1966
        Examples:
          .. code-block:: python

1967
          import paddle
1968

1969
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1970
          print(x.grad_name) # output is ``x@GRAD``
1971 1972 1973 1974

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1975 1976
    @name.setter
    def name(self, new_name):
1977
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1978

Y
Yu Yang 已提交
1979 1980
    @property
    def shape(self):
J
Jiabin Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

1989 1990
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1991 1992 1993 1994 1995 1996 1997
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1998
        # convert to tuple, make it as same as numpy API.
1999
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2000 2001

    @property
F
fengjiayi 已提交
2002
    def dtype(self):
J
Jiabin Yang 已提交
2003 2004 2005 2006 2007 2008 2009 2010
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

2011 2012
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
2013 2014 2015 2016 2017 2018
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2019
        return self.desc.dtype()
Y
Yu Yang 已提交
2020 2021 2022

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2023
        """
2024
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_base_LoDTensor_en` to check the meaning
J
Jiabin Yang 已提交
2025 2026 2027 2028 2029 2030
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2031
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2032 2033 2034 2035

        Examples:
          .. code-block:: python

2036
            import paddle
2037
            import paddle.base as base
2038 2039

            paddle.enable_static()
2040
            cur_program = base.Program()
J
Jiabin Yang 已提交
2041 2042 2043 2044 2045 2046
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2047 2048
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2049 2050
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2051
        return self.desc.lod_level()
Y
Yu Yang 已提交
2052

Y
Yu Yang 已提交
2053 2054
    @property
    def type(self):
J
Jiabin Yang 已提交
2055 2056 2057 2058 2059 2060 2061 2062
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

2063 2064
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
2065 2066 2067 2068 2069 2070
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2071
        return self.desc.type()
Y
Yu Yang 已提交
2072

2073 2074 2075
    @property
    def T(self):
        """
U
ustiniankw 已提交
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2108 2109
            stop_gradient=False,
        )
2110 2111 2112 2113 2114
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2115 2116 2117 2118 2119 2120 2121 2122 2123
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2124 2125
        return out

2126 2127 2128
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2129
        Variable. It remains in the current graph, that is, the cloned Variable
2130 2131 2132 2133
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2134
            Variable, The cloned Variable.
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2154 2155
            stop_gradient=self.stop_gradient,
        )
2156

2157 2158 2159
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2160 2161
        return output

W
Wu Yi 已提交
2162
    def _set_error_clip(self, error_clip):
2163
        """
U
ustiniankw 已提交
2164

2165 2166 2167 2168 2169 2170 2171
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2172

2173
        """
2174 2175
        self.error_clip = error_clip

2176 2177
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2178

2179 2180 2181 2182 2183 2184
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2185
        Returns:
2186
            None
U
ustiniankw 已提交
2187

2188 2189 2190 2191 2192 2193 2194
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2195

2196 2197 2198 2199 2200
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2201
        Returns:
2202
            object
U
ustiniankw 已提交
2203

2204 2205 2206 2207 2208
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2209 2210
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2211

2212
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2213

2214 2215 2216 2217 2218 2219 2220 2221
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2222
            raise ValueError("slice step can not be zero")
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2233 2234 2235
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2281 2282 2283
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2284
                    raise IndexError("invalid index")
2285 2286 2287 2288 2289
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2303
    def _cloneVar(self, copy=False):
2304 2305
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2306
                name=unique_name.generate_with_ignorable_key(self.name),
2307 2308
                dtype=self.dtype,
            )
2309 2310 2311 2312
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2313
        new_var = self._cloneVar()
2314 2315 2316 2317 2318 2319
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2320 2321 2322
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2323
        new_var = self._cloneVar()
2324 2325 2326 2327 2328 2329 2330 2331
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2332 2333 2334 2335 2336
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2337
                return self._cloneVar(True)
2338 2339 2340 2341 2342 2343 2344
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2345 2346 2347
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2348 2349 2350
                        start += step
                else:
                    while start > stop:
2351 2352 2353
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2354 2355 2356 2357
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2358
                return self._cloneVar(True)
2359
            index = int(item)
2360 2361 2362
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2363 2364 2365 2366 2367 2368
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2369
        return _getitem_static(self, item)
2370

2371
    def __setitem__(self, item, value):
2372
        from .dygraph.base import in_to_static_mode
2373

2374
        if in_to_static_mode():
2375 2376 2377 2378
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2379 2380 2381 2382
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2383

2384 2385
    def get_value(self, scope=None):
        """
2386
        Get the value of variable in given scope.
2387 2388

        Args:
2389
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2390 2391 2392 2393
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2394
            Tensor, the value in given scope.
2395 2396 2397 2398 2399

        Examples:
            .. code-block:: python

                import paddle
2400
                import paddle.static as static
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2425 2426
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2427 2428
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2429

2430 2431
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2432 2433 2434 2435
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2436 2437 2438 2439 2440

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2441 2442 2443
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2444 2445 2446 2447 2448
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2449

2450
        Set the value to the tensor in given scope.
2451 2452 2453

        Args:
            value(Tensor/ndarray) : The value to be set.
2454
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2455 2456 2457 2458 2459
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2460

2461 2462 2463 2464
        Examples:
            .. code-block:: python

                import paddle
2465
                import paddle.static as static
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2489

2490 2491 2492
        '''

        # The 'framework' is a low-level module, and 'executor'
2493
        # can not be imported at the begainning of this file.
2494 2495 2496 2497 2498
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2499 2500 2501 2502
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2503 2504 2505

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2506 2507 2508 2509
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2510 2511 2512 2513 2514 2515

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2516 2517 2518
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2529 2530 2531 2532
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2543 2544 2545 2546 2547 2548
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2549 2550 2551 2552 2553 2554 2555
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2556 2557
    def size(self):
        """
U
ustiniankw 已提交
2558

2559
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2560 2561

        Returns:
U
ustiniankw 已提交
2562
            Variable, the number of elements for current Variable
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2576

2577 2578 2579 2580
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2581 2582
            dtype=core.VarDesc.VarType.INT64,
        )
2583

2584 2585 2586
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2587 2588
        return output

2589 2590
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2591

2592 2593 2594 2595 2596
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2597

2598 2599 2600 2601 2602
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2603

2604 2605 2606 2607 2608 2609
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2610 2611
            bool, True if has this attribute.

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2633
    def attr(self, name):
2634 2635 2636 2637 2638 2639 2640
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2641
            int|str|list, The attribute value. The return value
2642 2643 2644 2645 2646
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2647
    def dist_attr(self):
2648
        """
2649
        Get distributed attribute of this Variable.
2650
        """
2651
        return self.desc.dist_attr
2652

2653 2654
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2655
        """
2656
        Set distributed attribute of this Variable.
2657
        """
2658
        self.desc.dist_attr = dist_attr
2659

Y
Yu Yang 已提交
2660

F
fengjiayi 已提交
2661 2662 2663
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2664

2665 2666
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2667 2668 2669 2670
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2671
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2672 2673 2674 2675
        ret_values.append(op_proto)
    return ret_values


2676
class OpProtoHolder:
2677 2678 2679 2680
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2681 2682 2683 2684 2685 2686 2687 2688
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2689 2690
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2691 2692 2693 2694 2695 2696
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2697 2698 2699 2700 2701 2702 2703 2704
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2705 2706
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2707 2708
        return self.op_proto_map[type]

2709 2710
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2711
        custom_op_names = []
2712 2713 2714
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2715 2716 2717
                custom_op_names.append(proto.type)

        return custom_op_names
2718

2719 2720 2721
    def has_op_proto(self, type):
        return type in self.op_proto_map

2722 2723 2724 2725
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2726
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2727
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2728
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2729
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2730 2731
        }

F
fengjiayi 已提交
2732

2733
class Operator:
2734
    """
2735 2736 2737 2738 2739 2740 2741
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2742
        type(str): The type of operator. Default None.
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2763
        Block.append_op or Block._prepend_op instead.
2764 2765 2766 2767

    Examples:
        .. code-block:: python

2768 2769
            import paddle.base as base
            cur_program = base.Program()
2770 2771 2772 2773 2774
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2775
    """
2776

2777
    OP_WITHOUT_KERNEL_SET = {
2778 2779 2780 2781 2782 2783
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
2784
        'pylayer',
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2807
    }
2808

2809 2810 2811
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2822
        if in_dygraph_mode():
2823 2824
            if type is None:
                raise ValueError(
2825 2826
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2827
            self._type = type
M
minqiyang 已提交
2828
            self.attrs = attrs if attrs else {}
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2839
            # attr for static graph mode cuda graph
2840 2841
            self._cuda_graph_attr = _current_cuda_graph_mode

2842 2843 2844
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2845
                op_attrs[
2846 2847
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2848 2849

            role_var_name = op_maker.kOpRoleVarAttrName()
2850 2851 2852 2853
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2854
                op_attrs[role_var_name] = self.block.program._op_role_var
2855 2856 2857 2858 2859

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2860 2861 2862 2863 2864
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2865 2866 2867
                return
            if type is None:
                raise ValueError(
2868 2869
                    "`type` to initialized an Operator can not be None."
                )
2870 2871
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2872 2873 2874
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2875
                        '  File "{}", line {}, in {}'.format(
2876 2877 2878 2879 2880 2881
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2882 2883 2884 2885 2886 2887 2888

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2889 2890 2891 2892 2893 2894 2895 2896
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2897 2898 2899
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2900
                if 'force_cpu' in op_attrs:
2901
                    if (
2902 2903
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2904
                    ) or op_attrs['force_cpu'] != False:
2905 2906 2907
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2908 2909
                            "used at the same time." % type
                        )
2910
            if _current_pipeline_stage is not None:
2911 2912 2913 2914 2915
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2916
                )
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2927 2928 2929
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2930 2931
                    if found:
                        in_args = inputs[in_proto.name]
2932
                        if not isinstance(in_args, (list, tuple)):
2933 2934 2935 2936
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2937 2938
                                % (in_proto.name, len(in_args))
                            )
2939
                        in_arg_names = []
2940
                        for index, arg in enumerate(in_args):
2941
                            if isinstance(arg, str):
2942
                                in_arg_names.append(arg)
2943
                            elif isinstance(arg, bytes):
2944
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2945
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2946
                                in_arg_names.append(arg.name)
2947
                            else:
2948
                                raise TypeError(
2949 2950
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2951
                                )
2952 2953 2954 2955 2956 2957 2958 2959
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2978
                            )
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2989 2990 2991 2992 2993 2994 2995 2996 2997
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2998 2999
                            % (out_proto.name, len(out_args))
                        )
3000 3001
                    out_arg_names = []
                    for arg in out_args:
3002
                        if isinstance(arg, str):
3003 3004
                            out_arg_names.append(arg)
                        else:
3005
                            out_arg_names.append(arg.name)
3006
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
3007
                        if not in_dygraph_mode():
3008
                            if isinstance(arg, str):
3009 3010 3011
                                block.var(arg).op = self
                            else:
                                arg.op = self
3012 3013
                    self.desc.set_output(out_proto.name, out_arg_names)

3014
            extra_attrs_map = core.get_op_extra_attrs(type)
3015 3016 3017 3018 3019
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3020 3021 3022
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3023 3024 3025
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3026
                for attr_name in extra_attrs_map.keys():
3027 3028 3029 3030 3031
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

3032 3033 3034 3035 3036 3037
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3038 3039
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3069 3070
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3071
                if global_ipu_index >= 0:
3072 3073 3074
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3075
                if global_ipu_stage >= 0:
3076 3077 3078
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3079

3080
            self.desc.check_attrs()
3081

3082 3083 3084 3085
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3086
    def _has_kernel(self, op_type):
3087 3088
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3089
    def to_string(self, throw_on_error):
3090
        """
3091 3092
        Get debug string.

3093
        Args:
3094 3095
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3096

3097 3098
        Returns:
            str: The debug string.
3099 3100

        """
3101
        protostr = self.desc.serialize_to_string()
3102
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3103 3104
        return _debug_string_(proto, throw_on_error)

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

3123
            import paddle.base as base
3124

3125
            cur_program = base.Program()
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3137
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3138 3139
            type(skip_op_callstack)
        )
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3166 3167 3168
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3169 3170 3171
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3182 3183
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3184 3185 3186 3187 3188
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3189 3190
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3191 3192
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3193 3194 3195 3196 3197 3198 3199
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3200 3201
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3202 3203 3204 3205 3206
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3207
            # it is bytes of serialized protobuf
3208 3209 3210 3211 3212
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3213 3214
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3215 3216 3217 3218 3219 3220 3221 3222 3223
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3224 3225 3226
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3227

3228 3229 3230 3231
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3232
        from paddle.distributed.auto_parallel.static.dist_context import (
3233 3234 3235
            get_default_distributed_context,
        )

3236
        dist_context = get_default_distributed_context()
3237 3238
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3239 3240 3241
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3242

3243
        if outputs_str != "{}":
3244 3245 3246 3247 3248 3249
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3250
        else:
3251 3252 3253
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3254 3255
        return op_str

Y
Yang Yang(Tony) 已提交
3256
    def __str__(self):
3257
        return self._to_readable_code()
3258 3259 3260

    __repr__ = __str__

F
fengjiayi 已提交
3261 3262
    @property
    def type(self):
3263
        return self.desc.type()
F
fengjiayi 已提交
3264 3265

    def input(self, name):
3266
        r"""
U
ustiniankw 已提交
3267

3268
        Get the input arguments according to the input parameter name.
3269

3270 3271
        Args:
            name(str): The input parameter name.
3272

3273
        Returns:
U
ustiniankw 已提交
3274
            list, return the list of argument names that associated with \
3275
                the specific parameter name.
U
ustiniankw 已提交
3276

3277
        """
F
fengjiayi 已提交
3278 3279
        return self.desc.input(name)

W
Wu Yi 已提交
3280
    def _rename_input(self, old_name, new_name):
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3291
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3292

W
Wu Yi 已提交
3293
    def _rename_output(self, old_name, new_name):
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3304
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3305

F
fengjiayi 已提交
3306 3307 3308 3309
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3310 3311 3312 3313 3314 3315 3316 3317
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3318
    def output(self, name):
3319
        r"""
3320
        Get output arguments by the output parameter name.
3321

3322 3323
        Args:
            name(str): The output parameter name.
3324

3325 3326 3327
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3328
        """
F
fengjiayi 已提交
3329 3330 3331 3332 3333 3334
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3335 3336 3337 3338 3339 3340
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3341 3342
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3343

F
fengjiayi 已提交
3344
    def has_attr(self, name):
3345
        """
3346 3347
        Whether this Operator has the attribute with name or not.

3348
        Args:
3349
            name(str): the attribute name.
3350

3351 3352
        Returns:
            bool: True if has this attribute.
3353 3354

        """
F
fengjiayi 已提交
3355 3356 3357
        return self.desc.has_attr(name)

    def attr_type(self, name):
3358
        """
3359
        Get the type of attribute by attribute's name.
3360

3361 3362
        Args:
            name(str): the attribute name.
3363

3364 3365
        Returns:
            core.AttrType: the attribute type.
3366
        """
3367
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3368

W
Wu Yi 已提交
3369
    def _set_attr(self, name, val):
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3380 3381
        self._update_desc_attr(name, val)

3382 3383 3384
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3396 3397 3398 3399 3400
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3401
            self.desc.set_block_attr(name, val.desc)
3402
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3403
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3404 3405 3406
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3407 3408
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3409 3410 3411 3412 3413 3414 3415 3416 3417
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3418 3419 3420 3421 3422 3423
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3424 3425 3426 3427 3428 3429 3430
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3431 3432
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3450

F
fengjiayi 已提交
3451 3452
    @property
    def attr_names(self):
3453
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3454 3455

    def attr(self, name):
3456
        """
3457 3458
        Get the attribute by name.

3459
        Args:
3460
            name(str): the attribute name.
3461

3462 3463
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3464 3465
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3466
        return self.desc.attr(name)
Y
Yu Yang 已提交
3467

W
Wu Yi 已提交
3468
    def _block_attr_id(self, name):
3469
        """
G
gongweibao 已提交
3470
        Get the block attribute's id by name.
3471

3472 3473
        Args:
            name(str): the attribute name.
3474

3475 3476
        Returns:
            int: the block index.
3477
        """
W
Wu Yi 已提交
3478
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3479

W
Wu Yi 已提交
3480
    def _block_attr(self, name):
G
gongweibao 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3491
        id = self._block_attr_id(name)
3492
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3493 3494
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3495
    def _blocks_attr(self, name):
G
gongweibao 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3506
        for i in self._blocks_attr_ids(name):
3507
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3508 3509 3510 3511
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3512
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3523
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3536 3537 3538 3539 3540
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3555 3556 3557 3558 3559
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3560 3561 3562 3563 3564 3565
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3566
    def all_attrs(self):
F
fengjiayi 已提交
3567
        """
3568 3569 3570
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3571
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3572 3573 3574 3575
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3576
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3577
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3578
                attr_map[n] = self._block_attr(n)
3579
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3580
                attr_map[n] = self._blocks_attr(n)
3581 3582 3583 3584 3585 3586
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3587

F
fengjiayi 已提交
3588 3589
        return attr_map

3590 3591 3592
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3593 3594 3595 3596

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3597 3598 3599
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3600 3601 3602 3603 3604 3605 3606 3607

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3608 3609
            return False

3610 3611 3612 3613 3614 3615
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3616
    @property
3617
    def dist_attr(self):
3618
        """
3619
        Get distributed attribute of this Variable.
3620
        """
3621
        return self.desc.dist_attr
3622

3623 3624
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3625
        """
3626
        Set distributed attribute of this Variable.
3627
        """
3628
        self.desc.dist_attr = dist_attr
3629

Y
Yu Yang 已提交
3630

W
wanghuancoder 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
3642 3643 3644 3645
    if (
        op_type == "while"
    ):  # dont' need check while, while is only a wrapper of inner ops, we will stuck in inner op.
        return
W
wanghuancoder 已提交
3646 3647 3648 3649 3650 3651 3652 3653
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
3654
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.base.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
W
wanghuancoder 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
3665
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.base.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
W
wanghuancoder 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3853
class Block:
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3868
        use `Program._create_block()` to create a block.
3869 3870 3871 3872

    Examples:
        .. code-block:: python

3873
            import paddle.base as base
3874

3875
            cur_program = base.Program()
3876 3877 3878 3879 3880 3881 3882 3883 3884
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3885
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3886
        self.desc = program.desc.block(idx)
3887
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3888
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3889 3890
        self.program = program

3891
    def __str__(self):
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

3912
            import paddle.base as base
3913

3914
            cur_program = base.Program()
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3926
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3927 3928
            type(skip_op_callstack)
        )
3929 3930 3931 3932 3933 3934 3935
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3936 3937
                op._to_readable_code(skip_op_callstack)
            )
3938 3939
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3940

F
fengjiayi 已提交
3941 3942
    def to_string(self, throw_on_error, with_details=False):
        """
3943 3944
        Get debug string.

F
fengjiayi 已提交
3945 3946
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3947
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3948
            with_details(bool): more details about variables and parameters
3949 3950
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3951

3952 3953
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3954
        """
3955
        assert isinstance(throw_on_error, bool) and isinstance(
3956 3957
            with_details, bool
        )
F
fengjiayi 已提交
3958
        if with_details:
F
fengjiayi 已提交
3959
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3960
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3961 3962 3963
                self.idx,
                self.parent_idx,
            )
3964
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3965
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3966 3967
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3968
            for op in self.ops:
F
fengjiayi 已提交
3969
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3970 3971
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3972 3973 3974
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3975
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3976 3977
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3978 3979 3980

    __repr__ = __str__

Y
Yu Yang 已提交
3981 3982
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3983
        return self.desc.parent
Y
Yu Yang 已提交
3984

Y
Yu Yang 已提交
3985 3986 3987 3988
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3989
    def _set_forward_block_idx(self, idx):
3990 3991 3992 3993 3994 3995 3996 3997 3998
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3999
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
4000

4001 4002 4003 4004 4005 4006 4007 4008
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
4009 4010
    @property
    def idx(self):
Y
Yu Yang 已提交
4011
        return self.desc.id
Y
Yu Yang 已提交
4012

Q
Qiao Longfei 已提交
4013
    def var(self, name):
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
4027
        if not isinstance(name, str):
M
minqiyang 已提交
4028
            raise TypeError(
4029 4030 4031
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
4032 4033
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
4034
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
4035
        return v
Q
Qiao Longfei 已提交
4036

X
Xin Pan 已提交
4037
    def _find_var_recursive(self, name):
4038 4039 4040 4041 4042 4043 4044
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
4045
            Variable: the Variable with the giving name. Or None if not found.
4046
        """
Y
Yu Yang 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4071
        return None
Y
Yu Yang 已提交
4072

X
Xin Pan 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4092

Q
Qiao Longfei 已提交
4093
    def all_parameters(self):
4094
        return list(self.iter_parameters())
4095

4096
    def iter_parameters(self):
4097 4098 4099 4100 4101
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4102

Y
Yu Yang 已提交
4103
    def create_var(self, *args, **kwargs):
4104
        if in_dygraph_mode():
4105
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4106
        else:
4107 4108 4109
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4110
        return var
Y
Yu Yang 已提交
4111

Q
Qiao Longfei 已提交
4112 4113 4114
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4115
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4116 4117
        """
        Rename variable in vars and ops' inputs and outputs
4118 4119

        Args:
4120 4121
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4122 4123 4124 4125 4126 4127 4128 4129

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4130
        """
4131 4132
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4133 4134 4135
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4136

T
typhoonzero 已提交
4137
        if not self.has_var(name):
4138
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4139 4140
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4141
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4142 4143 4144 4145 4146 4147
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4148
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4149 4150 4151 4152
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4153
        orig_var_type = v.type
4154
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4155
        # NOTE: v is destroyed by C++ after calling _rename_var.
4156
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4157
        if var_type == "Parameter":
L
Leo Chen 已提交
4158
            if in_dygraph_mode():
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4170
            else:
姜永久 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4183
        elif var_type == "Variable":
4184 4185 4186 4187 4188 4189 4190
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4191

W
Wu Yi 已提交
4192
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4193 4194 4195
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4196
        self._sync_with_cpp()
4197
        return var
T
typhoonzero 已提交
4198

4199 4200 4201
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4202
        self.desc._remove_var(name.encode())
4203 4204
        del self.vars[name]

Y
Yu Yang 已提交
4205 4206
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4207
        param = None
L
Leo Chen 已提交
4208
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4209
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4210
        else:
姜永久 已提交
4211
            param = Parameter(global_block, *args, **kwargs)
4212 4213 4214
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4215

4216
        if 'initializer' in kwargs:
4217 4218 4219 4220 4221

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4222
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4223
                        # are treated as initialization ops that cause error.
4224
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4225 4226
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4227 4228 4229
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4230
                        ]:
4231
                            continue
4232 4233 4234 4235 4236 4237 4238
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4239 4240 4241 4242 4243 4244
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4245
            elif init_ops_len == 1:
4246
                # TODO already inited, do nothing, should log a warning
4247 4248 4249
                pass
            else:
                initializer(param, self)
4250
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4251
        return param
Y
Yu Yang 已提交
4252

Y
Yu Yang 已提交
4253
    def append_op(self, *args, **kwargs):
4254 4255 4256 4257 4258 4259
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4260
        inplace_map = kwargs.get("inplace_map", None)
4261
        op_type = kwargs.get("type", None)
4262
        if in_dygraph_mode():
4263
            attrs = kwargs.get("attrs", {})
4264 4265 4266
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4267 4268 4269 4270 4271 4272
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4273
                type=op_type,
4274 4275 4276 4277
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4278

M
minqiyang 已提交
4279 4280
            # record ops in tracer rather than blocks
            #
4281
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4282
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4283

4284
            _dygraph_tracer().trace_op(
4285
                op_type,
4286 4287 4288 4289 4290 4291
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4292
        else:
4293
            from paddle.base.dygraph.base import param_guard
4294
            from paddle.utils import flatten
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4309

4310
            op_desc = self.desc.append_op()
4311 4312
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4313
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4314 4315
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4316 4317 4318
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
4319 4320
                'pylayer',
                'pylayer_grad',
4321 4322 4323 4324 4325
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
4326
            from .dygraph.base import in_to_static_mode
W
wanghuancoder 已提交
4327

4328
            if in_to_static_mode() and not _stride_in_no_check_dy2st_diff_mode:
W
wanghuancoder 已提交
4329 4330 4331
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4332 4333
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4334
            with param_guard(inputs), param_guard(outputs):
4335 4336 4337
                op = Operator(
                    block=self,
                    desc=op_desc,
4338
                    type=op_type,
4339 4340 4341 4342
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4343

M
minqiyang 已提交
4344
            self.ops.append(op)
4345
            if in_to_static_mode():
W
wanghuancoder 已提交
4346
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4347

4348 4349
        return op

W
Wu Yi 已提交
4350
    def _insert_op(self, index, *args, **kwargs):
4351 4352 4353 4354 4355 4356 4357 4358 4359
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4360
        self._sync_with_cpp()
F
fangshuixun007 已提交
4361
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4362

4363 4364
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4365
        Insert an Operator according to the giving arguments,
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4380 4381 4382 4383 4384 4385 4386 4387 4388
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4389 4390
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4391
        self.desc._remove_op(index, index + 1)
4392 4393
        del self.ops[index]

W
Wu Yi 已提交
4394
    def _slice_ops(self, start, end):
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4405
        return self.ops[start:end]
Y
Yancey1989 已提交
4406

W
Wu Yi 已提交
4407
    def _prepend_op(self, *args, **kwargs):
4408
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4409 4410
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4422
        else:
4423
            op_desc = self.desc._prepend_op()
4424 4425 4426 4427 4428 4429 4430 4431
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4432
            self.ops.insert(0, op)
4433

Y
Yu Yang 已提交
4434 4435
        return op

W
Wu Yi 已提交
4436
    def _sync_with_cpp(self):
4437
        """
4438 4439
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4440
        """
Q
Qiao Longfei 已提交
4441 4442 4443
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4444 4445 4446 4447
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4448 4449 4450 4451 4452 4453 4454 4455
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4456
                else:
4457 4458 4459 4460 4461 4462
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4463

4464
        # sync variables removed from c++ end
4465
        for var in list(self.vars.keys()):
4466
            if not self.desc.find_var(var.encode()):
4467 4468
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4469
        # sync operators from cpp
4470 4471 4472 4473
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4490 4491 4492 4493 4494

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4495
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4496 4497 4498 4499 4500 4501 4502

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4503 4504 4505 4506 4507
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4508 4509 4510 4511 4512 4513
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4514 4515 4516 4517 4518
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4519 4520 4521 4522
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4523
    def _copy_param_info_from(self, other):
4524
        """
4525 4526
        Copy the information of parameters from the other block.

4527
        Args:
4528 4529 4530 4531 4532
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4533 4534 4535 4536 4537

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4538
            raise TypeError(
4539 4540
                "_copy_param_info_from should be invoked with Block"
            )
4541
        for p in other.iter_parameters():
4542 4543 4544
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4545 4546
                # if the Parameter is pruned, v may be None
                continue
4547
            assert isinstance(v, Variable)
4548
            new_p = None
L
Leo Chen 已提交
4549
            if in_dygraph_mode():
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4562
            else:
姜永久 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4578 4579
            self.vars[new_p.name] = new_p

4580
    def _clone_variable(self, var, force_persistable=True):
4581 4582
        """
        Clone a variable into current block.
4583

4584 4585
        Args:
            var: the variable to be cloned.
4586 4587 4588
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4589 4590

        Returns:
4591
            Variable: the new  variable cloned from 'var' in current block.
4592 4593
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4594 4595 4596
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4597 4598 4599
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4600
        elif var.type == core.VarDesc.VarType.RAW:
4601 4602 4603
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4604 4605 4606 4607 4608 4609
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4610
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4611
                is_data=var.is_data,
4612 4613
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4614 4615 4616 4617 4618 4619 4620
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4621
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4622
                is_data=var.is_data,
4623 4624
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4625
        return ret_var
4626

Y
Yu Yang 已提交
4627

4628 4629 4630 4631
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4632
# of some old Python Variables(all old Python Operators) may have
4633
# been destructed.
4634 4635 4636
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4637 4638 4639 4640
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4641 4642 4643 4644 4645 4646 4647
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4648 4649 4650 4651 4652
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4653
class IrNode:
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4665 4666 4667
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4749
    def remove_input_by_id(self, node_id):
4750 4751 4752 4753 4754 4755
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4756
        self.node.remove_input(node_id)
4757

4758
    def remove_input(self, node):
4759 4760 4761 4762
        """
        Remove a node from inputs.

        Args:
4763
            node(IrNode): the node being removed.
4764
        """
4765
        self.node.remove_input(node.node)
4766

4767
    def append_input(self, node):
4768 4769 4770 4771
        """
        Append a node in inputs.

        Args:
4772
            node(IrNode): the node being appended.
4773
        """
4774
        self.node.append_input(node.node)
4775 4776 4777 4778 4779 4780 4781 4782

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4783
    def remove_output_by_id(self, node_id):
4784 4785 4786 4787 4788 4789
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4790
        self.node.remove_output(node_id)
4791

4792
    def remove_output(self, node):
4793 4794 4795 4796
        """
        Remove a node from outputs.

        Args:
4797
            node(IrNode): the node being removed.
4798
        """
4799
        self.node.remove_output(node.node)
4800

4801
    def append_output(self, node):
4802 4803 4804 4805
        """
        Append a node in outputs.

        Args:
4806
            node(IrNode): the node being appended.
4807
        """
4808
        self.node.append_output(node.node)
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4843 4844 4845
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4846
        super().__init__(node)
4847 4848 4849 4850 4851 4852 4853 4854 4855
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4856 4857 4858
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4859 4860 4861 4862 4863 4864 4865 4866 4867
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4868 4869 4870
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4871 4872
        return self.node.var().persistable()

4873 4874 4875 4876 4877 4878 4879
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4880 4881 4882
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4883 4884 4885 4886 4887 4888 4889 4890 4891
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4892 4893 4894
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4895 4896 4897 4898 4899 4900 4901 4902 4903
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4904 4905 4906
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4907 4908
        return self.node.var().shape()

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4942 4943 4944
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4945
        super().__init__(node)
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4956 4957 4958
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4959 4960
        self.node.op()._rename_input(old_input_name, new_input_name)

4961 4962 4963 4964 4965 4966 4967 4968
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4969 4970 4971
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4972 4973
        self.node.op()._rename_output(old_output_name, new_output_name)

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4984 4985 4986
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4999 5000 5001
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5002 5003 5004 5005 5006 5007 5008 5009 5010
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
5011 5012 5013
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5014 5015
        return self.node.op().set_type(new_type)

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
5030 5031 5032
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5033
        desc = self.node.op()
5034 5035 5036 5037 5038
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5039
            desc.set_block_attr(name, val.desc)
5040
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5041
            desc.set_blocks_attr(name, [v.desc for v in val])
5042 5043 5044
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5045 5046 5047 5048
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

5049 5050 5051 5052 5053 5054 5055
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
5056 5057 5058
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5059 5060 5061 5062 5063 5064 5065 5066 5067
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
5068 5069 5070
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5071 5072
        return self.node.op().output_arg_names()

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5094
class IrGraph:
5095
    """
5096
    Python IrGraph. Beneath it is a core.Graph, which is used for
5097
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5098 5099
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5100 5101 5102 5103
    """

    def __init__(self, graph, for_test=False):
        """
5104 5105
        Construct an IrGraph using core.Graph.

5106 5107 5108 5109 5110
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5111 5112
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5113 5114 5115
        self.graph = graph
        self._for_test = for_test

5116 5117 5118 5119
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5120 5121 5122
        Warns:
            The method only clones the graph structure, not its attributes.

5123 5124 5125
        Returns:
            IrGraph: A new and duplicated graph.
        """
5126
        g = self.graph.clone()
5127 5128
        return IrGraph(g, self._for_test)

5129
    def is_test(self):
5130 5131 5132
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5133 5134
        return self._for_test

W
WangZhen 已提交
5135
    def all_nodes(self):
5136 5137 5138
        """
        Return all nodes included in the graph as a set.
        """
5139
        return {IrNode(node) for node in self.graph.nodes()}
5140

5141
    def all_var_nodes(self):
5142 5143 5144
        """
        Return all variable nodes included in the graph as a set.
        """
5145
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5146

5147
    def all_persistable_nodes(self):
5148 5149 5150
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5151 5152
        persistable_nodes = set()
        for node in self.graph.nodes():
5153 5154 5155 5156 5157
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5158
                persistable_nodes.add(node)
5159
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5160

5161
    def all_op_nodes(self):
5162 5163 5164
        """
        Return all operator nodes included in the graph as a set.
        """
5165
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5166

5167 5168 5169 5170 5171 5172
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5173
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5174 5175 5176 5177 5178 5179 5180 5181 5182
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5183
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5195
            IrVarNode: the created persistable variable node.
5196
        """
5197 5198 5199 5200 5201
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5202
        return IrVarNode(self.graph.create_var_node(var_desc))
5203 5204

    def create_var_node(self, name, var_type, shape, var_dtype):
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5216
            IrVarNode: the created variable node.
5217 5218
        """

5219 5220 5221 5222
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5223
        return IrVarNode(self.graph.create_var_node(var_desc))
5224

5225 5226 5227 5228 5229 5230
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5231
    def create_var_node_from_desc(self, var_desc):
5232 5233 5234 5235 5236 5237 5238 5239
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5240
            IrVarNode: the created variable node.
5241
        """
5242
        return IrVarNode(self.graph.create_var_node(var_desc))
5243 5244

    def create_op_node(self, op_type, attrs, inputs, outputs):
5245 5246 5247 5248 5249 5250 5251
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5252
            outputs(dict): the outputs of the operator node.
5253 5254

        Returns:
5255
            IrOpNode: the created operator node.
5256
        """
5257 5258
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5259
        for attr, value in attrs.items():
5260
            self._update_desc_attr(op_desc, attr, value)
5261
        for input_name, var_nodes in inputs.items():
5262 5263
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5264 5265 5266
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5267
        for output_name, var_nodes in outputs.items():
5268 5269
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5270 5271 5272
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5273
        return IrOpNode(self.graph.create_op_node(op_desc))
5274 5275

    def create_op_node_from_desc(self, op_desc):
5276 5277 5278 5279 5280 5281 5282
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5283
            IrOpNode: the created operator node.
5284
        """
5285
        return IrOpNode(self.graph.create_op_node(op_desc))
5286 5287

    def update_input_link(self, old_input_node, new_input_node, op_node):
5288 5289 5290 5291
        """
        Update the input's link of a operator node.

        Args:
5292 5293 5294
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5295
        """
5296 5297 5298 5299 5300
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5301 5302 5303 5304
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5305
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5306

5307 5308 5309 5310 5311 5312 5313 5314 5315
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5316 5317 5318 5319 5320
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5321 5322 5323 5324 5325 5326
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5327
    def link_to(self, node_in, node_out):
5328 5329 5330 5331
        """
        Connect two nodes.

        Args:
5332 5333
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5334
        """
5335
        assert node_in.node in self.graph.nodes(), (
5336 5337
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5338
        assert node_out.node in self.graph.nodes(), (
5339 5340
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5341 5342
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5343 5344

    def safe_remove_nodes(self, remove_nodes):
5345 5346 5347 5348 5349 5350 5351
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5352
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5353 5354 5355 5356
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5357 5358
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5359

Z
Zhen Wang 已提交
5360 5361 5362 5363 5364 5365 5366 5367
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5368
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5369 5370 5371 5372
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5373
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5374 5375 5376
                        ]
                    else:
                        var_nodes[each_var_name].append(
5377 5378
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5379 5380
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5381
    def has_circle(self):
5382 5383 5384 5385 5386 5387
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5388 5389 5390
        return core.has_circle(self.graph)

    def graph_num(self):
5391 5392 5393 5394 5395 5396
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5397 5398 5399
        return core.graph_num(self.graph)

    def topology_sort(self):
5400 5401 5402
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5403
        Notes: the `graph` can not contain a circle.
5404 5405

        Returns:
Z
Zhen Wang 已提交
5406
            list(IrNode): nodes in topology order.
5407
        """
5408
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5409
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5410 5411

    def build_adjacency_list(self):
5412 5413 5414 5415
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5416
            dict{IrNode: set(IrNode)}: the adjacency list.
5417
        """
5418 5419
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5420
        for k, v in adj_list.items():
5421 5422
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5423

5424 5425 5426 5427 5428 5429 5430 5431
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5432
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5433 5434 5435 5436 5437
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5438 5439
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5440 5441 5442 5443
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5444 5445
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5446 5447 5448
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5449

5450
        remove_ctr_vars = set()
5451
        if remove_ctr_var:
5452
            for node in self.all_var_nodes():
5453 5454 5455
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5456 5457
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5458 5459
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5460 5461 5462 5463 5464 5465
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5466 5467 5468 5469
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5470 5471
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5472 5473 5474 5475 5476 5477 5478
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5479 5480 5481
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5482
        WARN: When the graph includes backward operator nodes, the
5483 5484 5485 5486 5487 5488
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5489
        convert_pass = core.get_pass('graph_to_program_pass')
5490 5491
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5492 5493 5494 5495
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5496 5497 5498 5499 5500 5501 5502 5503
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5504
        assert target_node is not None, (
5505 5506
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5507 5508
        return target_node

5509 5510 5511 5512
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5513 5514 5515 5516 5517
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5518
            desc.set_block_attr(name, val.desc)
5519
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5520
            desc.set_blocks_attr(name, [v.desc for v in val])
5521 5522 5523
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5524 5525 5526 5527 5528
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5529
class Program:
D
dzhwinter 已提交
5530
    """
5531
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5532
    control flow op like conditional_block, while :ref:`api_paddle_base_layers_While` is included,
J
Jiabin Yang 已提交
5533
    it will contain nested block.
5534

J
Jiabin Yang 已提交
5535
    Please reference the
5536
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/base/framework/framework.proto>`_
J
Jiabin Yang 已提交
5537
    for details.
D
dzhwinter 已提交
5538

J
Jiabin Yang 已提交
5539
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5540
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5541 5542 5543 5544 5545 5546 5547
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5548
    **Notes**:
5549 5550 5551
        **we have** :ref:`api_paddle_base_framework_default_startup_program` **and** :ref:`api_paddle_base_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_base_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_base_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5552 5553

    Returns:
J
Jiabin Yang 已提交
5554
        Program: An empty Program.
D
dzhwinter 已提交
5555 5556

    Examples:
5557 5558
        .. code-block:: python

5559 5560 5561 5562
            import paddle
            import paddle.static as static

            paddle.enable_static()
5563

5564 5565 5566 5567 5568
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5569
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5570 5571 5572

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5573 5574 5575

    """

5576 5577
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5578 5579
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5580 5581
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5582
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5583
        self.__op_role_var = []
T
tangwei12 已提交
5584

5585 5586
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5587
        self._is_distributed = False
5588
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5589
        self._is_chief = False
5590 5591 5592
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5593
        self._endpoints = []
5594 5595 5596
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5597
        self._trainers_endpoints = []
5598
        # the distributed lookup table names
T
tangwei12 已提交
5599
        self._distributed_lookup_table = None
5600 5601 5602

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5603 5604
        self._use_lamb = False

5605 5606 5607
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5608

5609 5610 5611
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5612
        self._program_config = None
5613

5614 5615
        self._pass_applied = None

H
hutuxian 已提交
5616 5617 5618
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5619 5620 5621
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5622 5623 5624
        # appending gradients times
        self._appending_grad_times = 0

5625 5626
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5627 5628
            "__auto_checkpoint_program__"
        )
5629

5630 5631
        # compiled program, i.e. Graph
        self._graph = None
5632 5633
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5634

5635
    def _find_var_class_kwargs(self, new_desc):
5636 5637 5638 5639 5640 5641 5642 5643
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5644 5645 5646 5647
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5648
            if idx > (len(self.blocks) - 1):
5649
                self._create_block()
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5701 5702 5703
                }

                if isinstance(old_var, Parameter):
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5721 5722
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5723 5724 5725 5726 5727 5728
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5729 5730 5731 5732 5733 5734 5735

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5736
        assert block_num == self.desc.num_blocks()
5737 5738

        # clear old blocks and desc
5739 5740 5741 5742 5743 5744 5745 5746 5747
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5748

5749
        del desc
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5779 5780
                import paddle
                import paddle.static as static
5781

5782 5783 5784
                paddle.enable_static()

                prog = static.default_main_program()
5785 5786 5787 5788 5789
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5790
                prog1 = static.default_main_program()
5791 5792 5793 5794 5795 5796 5797 5798
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5799
    @property
5800
    def _op_role(self):
Y
yuyang18 已提交
5801 5802 5803 5804 5805 5806 5807 5808
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5809
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5810 5811 5812 5813
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5814 5815
        return self._current_role

5816 5817
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5818 5819 5820
        self._current_role = role

    @property
5821
    def _op_role_var(self):
Y
yuyang18 已提交
5822
        """
5823
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5824

5825
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5826 5827 5828

        Notes: This is a very low-level API. Users should not use it directly.
        """
5829
        return self.__op_role_var
Y
yuyang18 已提交
5830

5831
    @signature_safe_contextmanager
5832 5833 5834 5835 5836
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5837 5838 5839 5840
        try:
            yield
        finally:
            self._current_role = tmp_role
5841

S
rename  
sneaxiy 已提交
5842
    @signature_safe_contextmanager
W
Wu Yi 已提交
5843
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5844 5845 5846 5847 5848 5849 5850
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5851
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5852 5853 5854

        Examples:

5855
            >>> import paddle.base as base
Y
yuyang18 已提交
5856
            >>> p, g = backward(...)
W
Wu Yi 已提交
5857
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5858 5859
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5860
        tmp_role = self._current_role
5861
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5862

Y
yuyang18 已提交
5863 5864
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5865
        self.__op_role_var = [
5866 5867 5868
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5869 5870 5871 5872 5873
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5874

S
rename  
sneaxiy 已提交
5875
    @signature_safe_contextmanager
X
Xin Pan 已提交
5876
    def _lr_schedule_guard(self, is_with_opt=False):
5877 5878 5879 5880 5881 5882 5883
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5884 5885 5886 5887
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5888 5889 5890

        Examples:

5891
            >>> import paddle.base as base
5892 5893 5894 5895
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5896 5897

        tmp_role = self._current_role
5898
        tmp_var = self.__op_role_var
5899

5900 5901
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5902 5903
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5904
        # TODO(typhoonzero): how to set target learning rate var
5905
        self.__op_role_var = []
5906 5907 5908 5909 5910
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5911

5912
    def __str__(self):
Y
yuyang18 已提交
5913 5914 5915 5916 5917 5918 5919 5920 5921
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5942 5943
            import paddle
            import paddle.static as static
5944

5945 5946 5947
            paddle.enable_static()

            cur_program = static.Program()
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5959
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5960 5961
            type(skip_op_callstack)
        )
5962 5963 5964
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5965
            program_str += '\n'
5966
        return program_str
Y
Yang Yang(Tony) 已提交
5967

F
fengjiayi 已提交
5968 5969 5970
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5971

J
Jiabin Yang 已提交
5972 5973 5974
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5975

J
Jiabin Yang 已提交
5976
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5977

H
haowang101779990 已提交
5978
        Returns:
J
Jiabin Yang 已提交
5979
            str: The debug string describe current Program.
Y
yuyang18 已提交
5980 5981

        Raises:
J
Jiabin Yang 已提交
5982
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5983

5984 5985 5986
        Examples:
            .. code-block:: python

5987 5988 5989 5990
                import paddle
                import paddle.static as static

                paddle.enable_static()
5991

5992 5993 5994
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5995
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5996
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5997
                print("program string without detail: {}".format(prog_string))
5998
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5999
        """
6000 6001 6002
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
6003 6004
            type(throw_on_error)
        )
6005 6006 6007
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
6008 6009
            type(with_details)
        )
6010

F
fengjiayi 已提交
6011 6012 6013 6014
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
6031 6032
        else:
            protostr = self.desc.serialize_to_string()
6033
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
6034 6035
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
6036

W
Wu Yi 已提交
6037
    def _get_desc(self):
Y
yuyang18 已提交
6038 6039 6040 6041 6042 6043 6044
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
6045 6046
        return self.desc

X
version  
Xin Pan 已提交
6047 6048 6049
    def _version(self):
        return self.desc._version()

6050
    def clone(self, for_test=False):
Y
yuyang18 已提交
6051
        """
6052
        .. note:::
6053 6054
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
6055
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
6056

6057
        Create a new Program with forward content of original one when ``for_test=True``.
6058
        Create a new Program as same as the original one when ``for_test=False``.
6059

6060
        Some operators, e.g., :ref:`api_paddle_base_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
6061 6062 6063
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
6064

6065 6066
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
6067 6068
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6069
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6070

C
cyberslack_lee 已提交
6071 6072 6073
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6074

C
cyberslack_lee 已提交
6075 6076
                import paddle
                import paddle.static as static
6077

C
cyberslack_lee 已提交
6078
                paddle.enable_static()
6079

C
cyberslack_lee 已提交
6080 6081 6082 6083 6084 6085 6086
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6087

J
Jiabin Yang 已提交
6088
        Args:
6089

6090 6091
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6092

J
Jiabin Yang 已提交
6093
        Returns:
6094
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6095

Y
yuyang18 已提交
6096 6097 6098

        Examples:

6099 6100 6101 6102 6103 6104 6105
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6106
            .. code-block:: python
C
cyberslack_lee 已提交
6107
                :name: code-example-2
6108

6109
                import paddle
6110 6111

                def print_prog(prog):
6112
                    for name, value in sorted(prog.block(0).vars.items()):
6113 6114 6115 6116 6117
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6118
                        for key, value in sorted(op.all_attrs().items()):
6119 6120 6121 6122
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6123
            1. To clone a test program, the sample code is:
6124
                .. code-block:: python
C
cyberslack_lee 已提交
6125
                    :name: code-example-3
6126

6127 6128 6129 6130 6131 6132
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6133 6134

                    def print_prog(prog):
6135
                        for name, value in sorted(prog.block(0).vars.items()):
6136 6137 6138 6139 6140
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6141
                            for key, value in sorted(op.all_attrs().items()):
6142 6143 6144
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6145 6146
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6147 6148 6149

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6150 6151 6152
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6153
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6154 6155
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6156
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6157 6158
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6159
                            test_program = train_program.clone(for_test=True)
6160
                    print_prog(test_program)
J
Jiabin Yang 已提交
6161 6162 6163 6164

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6165
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6166 6167 6168 6169
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6170 6171 6172
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6173 6174 6175
                            sgd.minimize(avg_loss)


6176
            2. The clone method can be avoid if you create program for training and program for testing individually.
6177
                .. code-block:: python
C
cyberslack_lee 已提交
6178
                    :name: code-example-4
6179

6180 6181 6182 6183 6184 6185
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6186 6187

                    def print_prog(prog):
6188
                        for name, value in sorted(prog.block(0).vars.items()):
6189 6190 6191 6192 6193
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6194
                            for key, value in sorted(op.all_attrs().items()):
6195 6196
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6197

6198
                    def network():
6199
                        img = static.data(name='image', shape=[None, 784])
6200
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6201 6202
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6203
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6204 6205
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6206 6207
                        return avg_loss

6208 6209 6210 6211 6212
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6213
                            avg_loss = network()
6214
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6215
                            sgd.minimize(avg_loss)
6216
                    # the test startup program is not used.
6217 6218
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6219 6220
                            avg_loss = network()
                    print_prog(test_program_2)
6221

6222
            The two code snippets above will generate and print same programs.
6223
        """
6224

T
tangwei12 已提交
6225
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6226 6227 6228
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6229
        pruned_origin_block_id_map = None
6230
        if for_test:
6231 6232
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6233 6234
                self.desc
            )
6235 6236
            forward_prog.blocks = [
                Block(forward_prog, i)
6237
                for i in range(forward_prog.desc.num_blocks())
6238 6239 6240
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6241
        else:
6242
            p = Program()
G
gongweibao 已提交
6243 6244
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6245
            p.desc = core.ProgramDesc(self.desc)
6246
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6247 6248

            p._current_role = self._current_role
6249
            p.__op_role_var = self.__op_role_var
6250
            p._appending_grad_times = self._appending_grad_times
6251 6252
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6253 6254
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6255

T
tangwei12 已提交
6256
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6257
            # its desc.
W
Wu Yi 已提交
6258
            p._sync_with_cpp()
6259

W
Wu Yi 已提交
6260
        p._copy_param_info_from(self)
6261
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6262
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6263
        return p
6264

6265
    def _prune(self, targets):
Y
yuyang18 已提交
6266 6267 6268 6269 6270 6271 6272 6273
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6274
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6275 6276 6277 6278
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6279
        """
6280
        return self._prune_with_input([], targets)
6281 6282

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6283
        """
6284
        Prune operators and variables which are not needed to generate
6285 6286
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6287 6288 6289 6290 6291 6292 6293

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6294
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6295 6296 6297 6298 6299 6300
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6301
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6302 6303 6304
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6305 6306
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6307 6308
        if not isinstance(targets, list):
            targets = [targets]
6309 6310

        for var in feeded_var_names:
6311
            if not isinstance(var, str):
6312 6313
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6314 6315
                    "str, but received %s." % type(var)
                )
6316

6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6333 6334 6335 6336
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6337
                    name = t.name
6338
                elif isinstance(t, str):
6339
                    name = str(t)
6340
                else:
6341 6342
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6343 6344
                        "Variable or Operator, but received %s." % type(t)
                    )
6345 6346 6347 6348 6349 6350

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6351 6352 6353
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6354

6355 6356 6357 6358 6359 6360 6361 6362 6363
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6364
                        # Skip optimize op except for optimize op in targets,
6365 6366 6367 6368 6369
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6370

6371
                if target_op is not None:
6372 6373 6374
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6375

6376
        res = Program()
6377
        res.desc, pruned_origin_block_id_map = core.prune(
6378 6379
            self.desc, set(feeded_var_names), targets_idx
        )
6380
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6381
        res._sync_with_cpp()
6382 6383 6384 6385 6386

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6387 6388
        return res

X
Xin Pan 已提交
6389
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6390
        """
F
fengjiayi 已提交
6391 6392 6393 6394 6395
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6396
        3. change the :code:`is_test`
Y
yuyang18 已提交
6397 6398 6399
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6400
        Args:
X
Xin Pan 已提交
6401 6402
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6403

Y
yuyang18 已提交
6404 6405 6406 6407 6408 6409
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6410
        res = Program()
6411
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6412 6413 6414 6415

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6416
        if prune_read_op:
6417
            while True:
6418 6419 6420 6421
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6422 6423 6424 6425 6426 6427
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6428
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6429 6430

        # change all `is_test` attributes to True
6431
        for i in range(res.desc.num_blocks()):
6432
            block = res.desc.block(i)
6433
            for j in range(block.op_size()):
6434 6435
                op = block.op(j)
                if op.has_attr('is_test'):
6436
                    op._set_bool_attr('is_test', True)
6437 6438 6439
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6440
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6441
        res._sync_with_cpp()
6442 6443
        return res

6444
    def _remove_training_info(self, clip_extra=True):
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6459
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6460 6461
        res._sync_with_cpp()

6462 6463
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6464
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6465

6466
        for i in range(res.desc.num_blocks()):
6467 6468 6469 6470
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6471 6472
            if not clip_extra:
                continue
6473 6474 6475 6476
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6477 6478 6479

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6493 6494 6495
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6509
                # The extra output of op will be removed in the future
6510 6511
                for name in remove_output_list:
                    op.remove_output(name)
6512

6513 6514 6515 6516 6517 6518 6519
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6520 6521
                )
                quant_attrs = [
6522 6523 6524 6525 6526 6527 6528
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6529
                ]
6530 6531
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6532
                remove_attr_list = []
6533 6534 6535 6536 6537 6538
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6539
                    if len(extra_attrs_map) > 0:
6540
                        if name in common_clipped_attrs_list:
6541
                            op.remove_attr(name)
6542
                        continue
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6553 6554
        return res

6555 6556
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6557
        """
6558
        .. note::
6559
            1. All information about parameters will be lost after serialization;
6560
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6561

6562 6563
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6564

J
Jiabin Yang 已提交
6565
        Args:
Y
yuyang18 已提交
6566

J
Jiabin Yang 已提交
6567
            binary_str_type (str): the binary prootbuf string.
6568

J
Jiabin Yang 已提交
6569 6570
        Returns:
            Program: A deserialized Program.
6571 6572 6573 6574

        Examples:
            .. code-block:: python

6575 6576 6577 6578
                import paddle
                import paddle.static as static

                paddle.enable_static()
6579

6580 6581 6582 6583
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6584

6585
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6586

6587
                    z = paddle.matmul(x=x, y=y)
6588

6589 6590
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6591

6592
                    print(static.default_main_program())
6593
                    print(prog_restored)
Y
yuyang18 已提交
6594
        """
6595 6596
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6597
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6598
        p._sync_with_cpp()
6599
        return p
Y
Yu Yang 已提交
6600

6601
    @staticmethod
6602
    def _construct_from_desc(desc):
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6614
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6615 6616 6617
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6618 6619
    @property
    def random_seed(self):
Y
yuyang18 已提交
6620
        """
J
Jiabin Yang 已提交
6621
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6622 6623
        the random seed from random device.

6624
        .. note::
6625
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6626 6627 6628

        Returns:
            int64: Random seed in current Program
6629

6630 6631 6632 6633

        Examples:
            .. code-block:: python

6634 6635 6636
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6637

6638 6639 6640
                paddle.enable_static()

                prog = static.default_main_program()
6641
                random_seed = prog.random_seed
6642
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6643 6644 6645
                print(random_seed)
                ## 0
                ## the default random seed is 0
6646

6647
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6648
                prog.random_seed = 1
6649
                z_var = F.dropout(x_var, 0.7)
6650

6651
                print(prog.random_seed)
6652 6653
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6654
        """
D
dzhwinter 已提交
6655 6656
        return self._seed

Q
qiaolongfei 已提交
6657 6658
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6659
        """
6660 6661
        The number of :ref:`api_guide_Block_en`  in this Program.

6662
        .. note::
6663
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6664 6665 6666

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6667

6668 6669 6670 6671

        Examples:
            .. code-block:: python

6672 6673 6674 6675
                import paddle
                import paddle.static as static

                paddle.enable_static()
6676

6677
                prog = static.default_main_program()
6678 6679
                num_blocks = prog.num_blocks
                print(num_blocks)
6680

6681 6682
                # print result:
                # 1
Y
yuyang18 已提交
6683
        """
Q
qiaolongfei 已提交
6684 6685
        return self.desc.num_blocks()

D
dzhwinter 已提交
6686 6687 6688
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6689 6690
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6691 6692
                % type(seed)
            )
D
dzhwinter 已提交
6693 6694
        self._seed = seed

Y
Yu Yang 已提交
6695
    def __repr__(self):
6696
        return self.__str__()
6697

Y
Yu Yang 已提交
6698
    def global_block(self):
Y
yuyang18 已提交
6699
        """
6700 6701
        .. note::
            This API has no effect in Dygraph mode.
6702 6703 6704

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6705 6706
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6707

6708 6709 6710 6711

        Examples:
            .. code-block:: python

6712 6713 6714 6715
                import paddle
                import paddle.static as static

                paddle.enable_static()
6716

6717
                prog = static.default_main_program()
6718 6719
                gb_block = prog.global_block()
                print(gb_block)
6720

Y
yuyang18 已提交
6721
        """
Y
Yu Yang 已提交
6722 6723
        return self.blocks[0]

Q
Qiao Longfei 已提交
6724
    def block(self, index):
Y
yuyang18 已提交
6725
        """
6726 6727
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6728

6729 6730
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6731 6732
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6733

J
Jiabin Yang 已提交
6734 6735
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6736 6737 6738 6739

        Examples:
            .. code-block:: python

6740 6741 6742 6743
                import paddle
                import paddle.static as static

                paddle.enable_static()
6744

6745
                prog = static.default_main_program()
6746 6747
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6748
        """
Q
Qiao Longfei 已提交
6749 6750
        return self.blocks[index]

Y
Yu Yang 已提交
6751
    def current_block(self):
Y
yuyang18 已提交
6752
        """
6753 6754
        .. note::
            This API has no effect in Dygraph mode.
6755

J
Jiabin Yang 已提交
6756 6757
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6758

J
Jiabin Yang 已提交
6759 6760
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6761

6762 6763 6764
        Examples:
            .. code-block:: python

6765 6766 6767 6768
                import paddle
                import paddle.static as static

                paddle.enable_static()
6769

6770
                prog = static.default_main_program()
6771 6772
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6773
        """
Y
Yu Yang 已提交
6774 6775
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6776
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6777 6778 6779 6780 6781
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6782

Y
yuyang18 已提交
6783 6784 6785 6786 6787
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6788
        new_block_idx = len(self.blocks)
6789 6790 6791 6792 6793
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6794
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6795 6796 6797 6798
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6799
    def _rollback(self):
Y
yuyang18 已提交
6800 6801 6802 6803 6804
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6805 6806
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6807
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6818 6819 6820
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6821
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6822

W
Wu Yi 已提交
6823
    def _copy_param_info_from(self, other):
6824
        """
6825
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6826

Y
yuyang18 已提交
6827 6828 6829
        Notes: This is a very low level API. Users should not invoke it
        directly.

6830 6831 6832 6833 6834 6835 6836
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6837 6838
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6839 6840
                % type(other)
            )
6841

W
Wu Yi 已提交
6842
        self.global_block()._copy_param_info_from(other.global_block())
6843

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6855 6856
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6857 6858
                % type(other)
            )
6859 6860
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6861
        self._parameters_on_pservers = other._parameters_on_pservers
6862
        self._endpoints = other._endpoints
6863
        self._ps_endpoint = other._ps_endpoint
6864 6865
        self._distributed_lookup_table = other._distributed_lookup_table

6866
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6867 6868
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6869

Y
yuyang18 已提交
6870 6871 6872
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6873 6874
        Args:
            other(Program): Other program
6875
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6876 6877
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6878
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6879 6880 6881 6882 6883

        Returns:
            None
        """
        if not isinstance(other, Program):
6884 6885
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6886 6887
                % type(other)
            )
F
fengjiayi 已提交
6888

6889 6890
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6891
                i: i for i in range(self.desc.num_blocks())
6892
            }
6893 6894 6895

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6896 6897
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6898
            for var in list(block.vars.values()):
6899 6900 6901 6902 6903 6904 6905
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6906

6907
    def list_vars(self):
Y
yuyang18 已提交
6908
        """
6909
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6910

J
Jiabin Yang 已提交
6911
        Returns:
6912
            iterable Tensors: The Generator will yield every Tensor in this program.
6913 6914 6915 6916

        Examples:
            .. code-block:: python

6917 6918
                import paddle
                import paddle.static as static
6919

6920 6921 6922 6923 6924
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6925 6926
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6927

6928 6929
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6930
        """
6931
        for each_block in self.blocks:
6932
            for each_var in list(each_block.vars.values()):
6933 6934
                yield each_var

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6945 6946 6947 6948
                import paddle
                import paddle.static as static

                paddle.enable_static()
6949

6950 6951
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6952
                hidden = static.nn.fc(x=data, size=10)
6953 6954
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6955 6956 6957 6958 6959 6960 6961

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6962 6963
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6974 6975 6976 6977 6978 6979 6980 6981 6982
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6983 6984 6985
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6986 6987
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6988
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
7016
        # can not be imported at the begainning of this file.
7017 7018
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
7019

7020 7021
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
7022 7023 7024 7025
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
7026 7027 7028 7029 7030

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
7031 7032
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
7033 7034 7035
                    type(mode)
                )
            )
7036 7037 7038 7039 7040

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
7041 7042 7043 7044 7045
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
7063 7064 7065 7066
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
7067 7068 7069 7070 7071 7072 7073 7074

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7075 7076 7077 7078
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7079 7080 7081 7082 7083 7084
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7085
        Set parameters and persistable buffers in state_dict to program.
7086
        An exception will throw if shape or dtype of the parameters is not match.
7087

7088 7089 7090 7091
        .. note::
            This function MUST called after run start_up_program

        Args:
7092
            state_dict(dict): the dict store parameters and persistable buffers.
7093 7094
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7095
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7096 7097
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7098

7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7128 7129 7130
                    type(state_dict)
                )
            )
7131 7132

        vars_dict = {var.name: var for var in self.list_vars()}
7133 7134 7135
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7147 7148
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7149 7150
                except TypeError as err:
                    warnings.warn(
7151 7152
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7153
            else:
7154
                warnings.warn(
7155 7156 7157 7158 7159 7160
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7161

Y
Yu Yang 已提交
7162

7163
class Parameter(Variable, metaclass=ParameterMetaClass):
7164
    """
7165
    Parameter is derived from Variable. A parameter is a persistable
7166
    Variable, and will be updated by optimizers after each iteration.
7167
    The training of a neural network is essentially the updating of
7168 7169
    its parameters.

7170
    Relative to a general Variable, a Parameter has several its own
7171 7172
    member variables:

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7183
        need_clip (bool): Whether the parameter gradient need to be cliped
7184
            in optimizer. Default is True.
7185 7186
    """

7187 7188 7189 7190 7191 7192
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7193
        **kwargs,
7194
    ):
7195 7196 7197 7198 7199
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7200 7201
        for each in shape:
            if each < 0:
7202 7203
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7214
            **kwargs,
7215
        )
Y
Yu Yang 已提交
7216 7217
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7218 7219
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7220 7221
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7222 7223
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7224
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7225

7226 7227
        self.need_clip = kwargs.get('need_clip', True)

7228 7229
        self.is_distributed = False

7230 7231
        self.is_parameter = True

F
fengjiayi 已提交
7232
    def __str__(self):
7233
        return self._to_readable_code()
F
fengjiayi 已提交
7234

F
update  
fengjiayi 已提交
7235 7236 7237
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7238

F
update  
fengjiayi 已提交
7239 7240 7241 7242 7243 7244 7245 7246
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7247 7248 7249
        Examples:
            .. code-block:: python

7250
                import paddle.base as base
G
GGBond8488 已提交
7251
                import paddle
7252

7253
                prog = base.default_main_program()
G
GGBond8488 已提交
7254
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7255 7256
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7257
        """
7258
        assert isinstance(throw_on_error, bool) and isinstance(
7259 7260
            with_details, bool
        )
F
update  
fengjiayi 已提交
7261 7262
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7263 7264 7265 7266 7267 7268 7269
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7270
            for attr_name in additional_attr:
7271
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7272 7273
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7274 7275 7276 7277
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7278

W
wanghuancoder 已提交
7279
class EagerParamBase(core.eager.Tensor):
7280
    """
7281 7282
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7300
        need_clip (bool): Whether the parameter gradient need to be cliped
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7315 7316
                    % list(shape)
                )
7317 7318 7319 7320 7321 7322 7323

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7324 7325 7326
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7327
        super().__init__(
7328 7329 7330 7331 7332 7333
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7348 7349 7350
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7351 7352

    def set_init_func(self, obj):
7353
        self._init_func = obj
7354 7355 7356

    @dygraph_only
    def initialize(self):
7357 7358 7359
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7360
        self._init_func(self, None)
7361
        # clear function handle to release resource
7362
        self._init_func = None
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7375 7376
                type(trainable),
            )
7377

7378 7379 7380 7381
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7382 7383 7384
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7385
        self._init_op_creator(self, block)
7386

7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7406
            tensor=super().__str__()
7407
        )
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7437 7438
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7439 7440 7441 7442 7443 7444
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7445 7446
        return new_param

7447 7448 7449
    __repr__ = __str__


Y
Yu Yang 已提交
7450
# program is a global instance.
Y
Yu Yang 已提交
7451 7452
_main_program_ = Program()
_startup_program_ = Program()
7453
_startup_program_._is_start_up_program_ = True
7454

7455

7456
def default_startup_program():
Y
Yu Yang 已提交
7457
    """
Y
yuyang18 已提交
7458 7459
    Get default/global startup program.

7460
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7461
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7462

7463
    This method will return the default or the current startup program. Users can use
7464
    :ref:`api_paddle_base_framework_program_guard`  to switch :ref:`api_paddle_base_framework_Program` .
Y
yuyang18 已提交
7465

7466 7467
    Returns:
        Program: current default startup program.
7468

7469
    Returns type:
7470 7471 7472 7473

    Examples:
        .. code-block:: python

7474
            import paddle
7475

7476
            paddle.enable_static()
7477 7478 7479 7480
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7481
    """
Y
Yu Yang 已提交
7482
    return _startup_program_
7483

7484

7485
def default_main_program():
Y
Yu Yang 已提交
7486
    """
7487
    This API can be used to get ``default main program`` which store the
7488
    descriptions of Ops and tensors.
T
tangwei12 已提交
7489

7490 7491
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7492

7493
    The ``default main program`` is the default value for ``Program`` parameter in
7494
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7495
    :code:`default_main_program` when the program is not specified.
7496

7497
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_base_framework_program_guard` .
T
tangwei12 已提交
7498

Y
Yu Yang 已提交
7499
    Returns:
7500
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7501 7502 7503 7504

    Examples:
        ..  code-block:: python

7505
            import paddle
7506

7507
            paddle.enable_static()
7508
            # Sample Network:
7509
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
7510
            y = paddle.static.data(name='y', shape=[100, 100], dtype='float32')
7511
            out = paddle.add(x, y)
7512

7513 7514 7515
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7516
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7517
    """
Y
Yu Yang 已提交
7518
    return _main_program_
Y
Yu Yang 已提交
7519 7520 7521 7522 7523


def switch_main_program(program):
    """
    Switch the main program to a new program.
7524

Y
Yu Yang 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7539
    Switch the startup program to a new program
Y
Yu Yang 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7552
@signature_safe_contextmanager
Y
Yu Yang 已提交
7553 7554
def program_guard(main_program, startup_program=None):
    """
7555 7556
    :api_attr: Static Graph

7557 7558 7559
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7560

G
guofei 已提交
7561
    Args:
7562
        main_program(Program): New main program inside ``with`` statement.
7563 7564
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7565 7566 7567
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7568
    Examples:
C
cyberslack_lee 已提交
7569 7570
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7571

C
cyberslack_lee 已提交
7572
            import paddle
Y
yuyang18 已提交
7573

C
cyberslack_lee 已提交
7574 7575 7576 7577 7578 7579
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7580 7581 7582

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7583

Y
Yu Yang 已提交
7584
    Examples:
C
cyberslack_lee 已提交
7585 7586
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7587

C
cyberslack_lee 已提交
7588
            import paddle
7589

C
cyberslack_lee 已提交
7590 7591 7592 7593 7594
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7595

Y
Yu Yang 已提交
7596
    """
7597
    from .data_feeder import check_type
7598 7599 7600 7601

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7602 7603
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7604 7605 7606 7607 7608 7609
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7610 7611
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7612
        startup_program = switch_startup_program(startup_program)
7613 7614 7615 7616 7617 7618
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7619 7620


W
Wu Yi 已提交
7621
def _get_var(name, program=None):
X
xuwei06 已提交
7622
    """
Y
yuyang18 已提交
7623
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7624

X
xuwei06 已提交
7625 7626 7627
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7628
        If None, default_global_program() will be used.
X
xuwei06 已提交
7629 7630 7631 7632 7633 7634 7635

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7636
    assert isinstance(program, Program)
X
xuwei06 已提交
7637 7638

    return program.global_block().var(name)
7639 7640


7641 7642
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
7643
    from .dygraph.base import in_to_static_mode
7644 7645
    from .dygraph import Tracer

7646
    if in_to_static_mode():
7647 7648 7649 7650 7651 7652 7653
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7654
@signature_safe_contextmanager
L
lujun 已提交
7655
def _dygraph_guard(tracer):
7656 7657
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
M
minqiyang 已提交
7658

C
Charles-hit 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    try:
        yield
    finally:
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7669 7670 7671
    try:
        yield
    finally:
7672
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7673 7674


S
rename  
sneaxiy 已提交
7675
@signature_safe_contextmanager
L
lujun 已提交
7676
def _dygraph_place_guard(place):
7677 7678 7679
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7680 7681
    _set_dygraph_tracer_expected_place(place)

7682 7683 7684
    try:
        yield
    finally:
7685
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7686
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7687 7688


7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7699

7700
    Note:
7701
        The API only supports static graph mode.
7702 7703 7704 7705

    A context manager that specifies the device on which the OP will be placed.

    Args:
7706
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7707
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7708 7709 7710 7711 7712 7713 7714
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7715

7716
        .. code-block:: python
7717

7718
            # required: gpu
Z
Zhang Ting 已提交
7719
            import paddle
7720

Z
Zhang Ting 已提交
7721 7722 7723
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7724
            if support_gpu:
Z
Zhang Ting 已提交
7725
                place = paddle.CUDAPlace(0)
7726 7727

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7728 7729 7730
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7731

Z
Zhang Ting 已提交
7732
            with paddle.static.device_guard("cpu"):
7733
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7734 7735
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7736
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7737
                out = paddle.reshape(data1, shape=shape)
7738

Z
Zhang Ting 已提交
7739 7740
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7741 7742 7743
            result = exe.run(fetch_list=[out])
    """

7744 7745 7746 7747 7748
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7749 7750 7751 7752
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7753
        raise ValueError(
7754
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7755 7756
            "when there is no need to specify device. But received %s" % device
        )
7757 7758
    if index:
        device = ":".join([device, index])
7759
    pre_device = switch_device(device)
7760 7761 7762 7763
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7764 7765


7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7778
        The API only supports static graph mode.
7779

7780
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7781 7782 7783 7784 7785

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7786
    assert (
7787
        not in_dygraph_mode()
7788
    ), "cuda_graph_guard only works under static graph mode"
7789 7790
    assert (
        core.is_compiled_with_cuda()
7791 7792 7793 7794 7795 7796 7797 7798
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7799 7800 7801
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7802
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7803 7804 7805 7806 7807 7808 7809

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7810 7811
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7812 7813 7814 7815
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7816 7817
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7818 7819
        else:
            raise ValueError(
7820 7821
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7822 7823 7824 7825 7826


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7827
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7838
            import paddle
G
guofei 已提交
7839 7840

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7841
            res = paddle.get_flags(flags)
G
guofei 已提交
7842 7843 7844 7845 7846 7847
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7848
            if _global_flags().is_public(key):
7849
                value = _global_flags()[key]
G
guofei 已提交
7850 7851 7852 7853
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7854 7855 7856
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7857
    elif isinstance(flags, str):
7858
        if _global_flags().is_public(flags):
7859
            value = _global_flags()[flags]
G
guofei 已提交
7860 7861 7862 7863
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7864 7865
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7866 7867 7868
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7869 7870 7871 7872 7873 7874


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7887 7888 7889 7890
        return place

    if not isinstance(place, str):
        raise ValueError(
7891 7892
            "place only support string which is 'Place' and so on."
        )
7893 7894

    place = place.lower()
7895
    if place == "cpu":
7896
        return core.CPUPlace()
7897

7898
    if place == "device":
7899 7900
        return core.Place()

7901
    # GPU
7902 7903 7904 7905
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7906
                "The device should not be {}, since PaddlePaddle is "
7907
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7908
            )
7909 7910 7911 7912 7913 7914 7915 7916 7917
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7918 7919

    # XPU
7920 7921 7922 7923
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7924
                "The device should not be {}, since PaddlePaddle is "
7925
                "not compiled with XPU".format(avaliable_xpu_place.group())
7926
            )
7927 7928 7929 7930
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7931

J
jianghaicheng 已提交
7932 7933 7934 7935 7936
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7937
                "The device should not be {}, since PaddlePaddle is "
7938
                "not compiled with IPU".format(avaliable_ipu_place.group())
7939
            )
J
jianghaicheng 已提交
7940 7941 7942 7943 7944
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7945 7946 7947 7948 7949 7950 7951
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7952
    raise ValueError(
7953
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7954
    )
7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret