framework.py 269.5 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37
from .. import ir
38
from paddle.base.libpaddle import DataType
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_static, _setitem_static, _setitem_impl_
43
import threading
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
52
    'set_ipu_shard',
S
sneaxiy 已提交
53 54
    'cuda_places',
    'cpu_places',
55
    'xpu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58 59
    'in_new_ir_mode',
    'in_dynamic_or_new_ir_mode',
60
    'is_compiled_with_cinn',
C
chengduo 已提交
61
    'is_compiled_with_cuda',
62
    'is_compiled_with_rocm',
63
    'is_compiled_with_xpu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
    '_stride_in_no_check_dy2st_diff',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
107
            core._switch_tracer(val)
108 109 110
        self.__dict__[name] = val


L
lujun 已提交
111
_dygraph_tracer_ = None
112 113
global_var = GlobalThreadLocal()

114
_global_expected_place_ = None
115
_current_device = None
116
global_prog_seed = 0
117
_current_pipeline_stage = None
118
_current_cuda_graph_mode = None
119
_global_flags_ = core.globals()
W
wanghuancoder 已提交
120
_stride_in_no_check_dy2st_diff_mode = False
J
Jiabin Yang 已提交
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
paddle_type_to_proto_type = {
    DataType.BOOL: core.VarDesc.VarType.BOOL,
    DataType.FLOAT16: core.VarDesc.VarType.FP16,
    DataType.UINT16: core.VarDesc.VarType.BF16,
    DataType.FLOAT32: core.VarDesc.VarType.FP32,
    DataType.FLOAT64: core.VarDesc.VarType.FP64,
    DataType.INT8: core.VarDesc.VarType.INT8,
    DataType.INT16: core.VarDesc.VarType.INT16,
    DataType.INT32: core.VarDesc.VarType.INT32,
    DataType.INT64: core.VarDesc.VarType.INT64,
    DataType.UINT8: core.VarDesc.VarType.UINT8,
    DataType.COMPLEX64: core.VarDesc.VarType.COMPLEX64,
    DataType.COMPLEX128: core.VarDesc.VarType.COMPLEX128,
}


K
Kim Yann 已提交
180
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
181 182 183 184
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
206
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
207 208 209 210 211

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
212
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
213 214


215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
def in_new_ir_mode():
    """

    This API checks whether paddle runs in static graph mode and use new ir api.

    Returns:
        bool: Whether paddle runs in static graph mode and use new ir api.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> print(paddle.framework.in_new_ir_mode())
            False

            >>> paddle.enable_static()
            >>> paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
            >>> print(paddle.framework.in_new_ir_mode())
            True

    """
    return ir.core._use_new_ir_api() and not in_dygraph_mode()


def in_dynamic_or_new_ir_mode():
    """

    This API checks whether paddle runs in dynamic graph or new ir mode.

    Returns:
        bool: Whether paddle runs in static graph mode and use new ir api.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            True

            >>> paddle.enable_static()
            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            False

            >>> paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
            >>> print(paddle.framework.in_dynamic_or_new_ir_mode())
            True

    """
    return in_dygraph_mode() or in_new_ir_mode()


268 269
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
270 271 272 273 274
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
275
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
276 277 278 279
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
280
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
281
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
282
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
283
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
284
            which means no pipelining computation order and run Ops in terms of graph.
285

G
gouzil 已提交
286 287 288 289 290 291 292
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


327 328 329 330
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
331 332 333 334 335
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

336 337 338 339 340
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
341
            The sharded model will be computed from small to large. The default value is -1,
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

367
    from paddle.nn import Layer
368

369 370 371 372 373
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
374 375
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
376 377 378 379 380 381 382 383 384 385 386 387

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


388 389
def require_version(min_version, max_version=None):
    """
390 391 392
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
393

394 395 396 397
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
398

399 400
    Returns:
        None.
401

402 403 404 405 406 407
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
408

409 410
    Examples:
        .. code-block:: python
411

412
            import paddle.base as base
413

414
            # any version >= 0.1.0 is acceptable.
415
            base.require_version('0.1.0')
416

417
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
418
            base.require_version(min_version='0.1.0', max_version='10.0.0')
419
    """
420 421 422
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
423 424
            % (type(min_version))
        )
425 426 427 428

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
429 430
            % (type(max_version))
        )
431 432 433 434 435

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
436 437
            "like '1.5.2.0', but received %s" % min_version
        )
438 439 440 441 442 443

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
444 445
                "like '1.5.2.0', but received %s" % max_version
            )
446 447

    version_installed = [
448 449 450 451
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
452 453 454 455
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
456
        for i in range(len(ver_a)):
457 458 459 460 461 462 463 464 465 466 467
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
468 469 470
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
471 472 473 474
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
475 476 477
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
478 479 480
        return

    min_version_split = min_version.split('.')
481 482 483
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
484 485 486

    if max_version is not None:
        max_version_split = max_version.split('.')
487 488 489
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
490

491 492 493 494
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
495 496
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
497 498
                % (min_version, max_version, fluid_version.full_version)
            )
499 500 501 502 503
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
504 505
                % (min_version, fluid_version.full_version, min_version)
            )
506 507


508 509
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
510
        assert not in_dygraph_mode(), (
511 512
            "We don't support %s in dynamic graph mode" % func.__name__
        )
513 514 515 516 517 518 519
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
520
        assert in_dygraph_mode(), (
521 522 523
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
524 525 526 527 528
        return func(*args, **kwargs)

    return __impl__


529 530 531
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
532

533
        assert in_dygraph_mode() or in_declarative_mode(), (
534 535 536
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
537 538 539 540 541
        return func(*args, **kwargs)

    return __impl__


542 543
def _static_only_(func):
    def __impl__(*args, **kwargs):
544
        assert not in_dygraph_mode(), (
545 546 547
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
548 549 550 551 552
        return func(*args, **kwargs)

    return __impl__


553 554 555 556 557
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


558
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
559 560
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
561 562
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
563
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
564
# same base class.
565 566 567
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
568 569
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
570
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
571
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
572 573
            % (func.__name__, func.__name__)
        )
574 575 576 577

    return __impl__


T
tangwei12 已提交
578
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
579
# in base api Layer.set_dict, Optimizer.load, in order to correct the argument without
580 581 582 583 584 585 586 587 588
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
589 590
                DeprecationWarning,
            )
591 592 593 594 595 596 597
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


598 599
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
600
static_only = wrap_decorator(_static_only_)
601
fake_interface_only = wrap_decorator(_fake_interface_only_)
602
non_static_only = wrap_decorator(_non_static_only_)
603 604


L
lujun 已提交
605
def _dygraph_tracer():
606
    return global_var._dygraph_tracer_
607

W
Wu Yi 已提交
608

609 610 611 612
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
613
def _current_expected_place():
614 615 616
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
617 618 619 620 621
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
622
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
623 624 625 626 627
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
628 629 630 631 632 633
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
634
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
635 636 637 638 639
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
655 656 657 658 659 660 661
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
662 663
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
664 665 666 667 668


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
669
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
670 671


S
sneaxiy 已提交
672
def _cpu_num():
673
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
674 675 676 677 678 679 680
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
681 682 683
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
684
        os.environ['CPU_NUM'] = str(1)
685
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
686 687 688 689 690 691 692 693
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
694
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
695
    return device_ids
S
sneaxiy 已提交
696 697


698 699 700 701 702
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
703
        device_ids = range(core.get_xpu_device_count())
704 705 706
    return device_ids


707 708 709 710 711 712 713 714 715
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


716 717 718 719 720 721 722 723 724
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

725 726
            import paddle.base as base
            support_xpu = base.is_compiled_with_xpu()
727 728 729 730
    """
    return core.is_compiled_with_xpu()


731 732 733 734 735 736 737
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
738

739 740 741 742 743 744
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
745 746
    Returns:
        None
747 748 749 750 751 752 753 754 755 756

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


757 758 759 760
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

761 762
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
763 764 765 766 767 768 769 770 771 772

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
773 774 775 776
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

777 778
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
779 780 781 782

    Examples:
        .. code-block:: python

783
            import paddle
784
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
785 786 787 788
    """
    return core.is_compiled_with_cuda()


789 790 791 792
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

793 794
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
795 796 797 798 799

    Examples:
        .. code-block:: python

            import paddle
800
            support_gpu = paddle.device.is_compiled_with_rocm()
801 802 803 804
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
805
def cuda_places(device_ids=None):
L
lujun 已提交
806
    """
807
    Note:
808 809 810
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
811
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
812 813

    If :code:`device_ids` is None, environment variable of
814
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
815
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
816
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
817
    If :code:`FLAGS_selected_gpus` is not set, all visible
818
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
819 820

    If :code:`device_ids` is not None, it should be the device
821
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
822
    the returned list would be
C
Chen Weihang 已提交
823
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
824

825
    Parameters:
826
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
827 828

    Returns:
C
Chen Weihang 已提交
829
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
830 831

    Examples:
832

L
lujun 已提交
833 834
        .. code-block:: python

C
Chen Weihang 已提交
835 836
            import paddle
            import paddle.static as static
T
tangwei12 已提交
837

838
            # required: gpu
839

C
Chen Weihang 已提交
840 841 842
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
843 844

    """
845
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
846
    if device_ids is None:
C
chengduo 已提交
847
        device_ids = _cuda_ids()
S
sneaxiy 已提交
848 849 850 851 852
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


853 854 855 856
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
857 858 859 860 861 862 863 864 865
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
866
        the returned list would be
S
sunzhongkai588 已提交
867
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
868

869 870 871 872 873 874
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
875

876 877
            # required: xpu

878 879
            import paddle
            import paddle.static as static
880

881 882 883
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
884
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
885 886 887 888 889 890 891
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
892
def cpu_places(device_count=None):
L
lujun 已提交
893
    """
C
Chen Weihang 已提交
894
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
895

S
add doc  
sneaxiy 已提交
896
    If :code:`device_count` is None, the device count would
897
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
898 899
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
900 901
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
902

903 904
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
905 906

    Returns:
C
Chen Weihang 已提交
907
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
908 909

    Examples:
910

L
lujun 已提交
911 912
        .. code-block:: python

C
Chen Weihang 已提交
913 914
            import paddle
            import paddle.static as static
T
tangwei12 已提交
915

C
Chen Weihang 已提交
916 917 918
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
919 920
    """

S
sneaxiy 已提交
921 922 923 924 925 926
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
927
    """
928
    This function creates a list of :code:`base.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
929 930

    If :code:`device_count` is None, the device count would
931
    be determined by environment variable :code:`CPU_NUM`.
932 933 934 935
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
936

937 938
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
939 940

    Returns:
941
        list of base.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
942 943 944 945

    Examples:
        .. code-block:: python

946 947
            import paddle.base as base
            cuda_pinned_places_cpu_num = base.cuda_pinned_places()
L
lujun 已提交
948
            # or
949
            cuda_pinned_places = base.cuda_pinned_places(1)
L
lujun 已提交
950 951

    """
952
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
953
    if device_count is None:
954 955
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
956 957


958
class NameScope:
959 960 961 962 963 964 965 966 967 968
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
969 970 971
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
972 973 974 975 976 977 978 979 980 981 982 983 984
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
985
@signature_safe_contextmanager
986 987
def name_scope(prefix=None):
    """
988

989
    Generate hierarchical name prefix for the operators in Static Graph.
990

991
    Note:
T
Tao Luo 已提交
992 993
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
994
        Don't use it in dygraph, since it will cause memory leak.
995 996

    Args:
T
Tao Luo 已提交
997
        prefix(str, optional): prefix. Default is none.
998 999

    Examples:
1000

1001
        .. code-block:: python
T
Tink_Y 已提交
1002

1003 1004 1005
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1006
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1007
             b = a + 1
1008
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1009
                c = b * 1
1010
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1011
                d = c / 1
1012 1013 1014
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1015 1016
                g = f - 1

1017
          # Op are created in the default main program.
1018
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1034 1035
    """
    # TODO(panyx0718): Only [0-9a-z].
1036
    # in dygraph we don't need namescope since it will cause mem leak
1037
    if in_dygraph_mode():
L
Leo Chen 已提交
1038 1039
        yield
    else:
T
tianshuo78520a 已提交
1040
        assert prefix, "namescope prefix can not be empty."
1041 1042
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1043 1044 1045 1046
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1059 1060
def generate_control_dev_var_name():
    import random
1061

W
Wu Yi 已提交
1062
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1063 1064 1065 1066


def grad_var_name(var_name):
    """
1067 1068
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1069 1070 1071
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1072

1073
def convert_np_dtype_to_dtype_(np_dtype):
1074
    """
1075
    Convert the data type in numpy to the data type in Paddle.
1076

1077
    Args:
1078 1079
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1080

1081
    Returns:
1082
        core.VarDesc.VarType / core.DataType : The data type in Paddle.
1083 1084

    """
1085 1086
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1087 1088 1089
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    if dtype == np.float32:
        return core.VarDesc.VarType.FP32
    elif dtype == np.float64:
        return core.VarDesc.VarType.FP64
    elif dtype == np.float16:
        return core.VarDesc.VarType.FP16
    elif dtype == np.int32:
        return core.VarDesc.VarType.INT32
    elif dtype == np.int16:
        return core.VarDesc.VarType.INT16
    elif dtype == np.int64:
        return core.VarDesc.VarType.INT64
    elif dtype == np.bool_:
        return core.VarDesc.VarType.BOOL
    elif dtype == np.uint16:
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1117
    else:
1118
        raise ValueError("Not supported numpy dtype %s" % dtype)
1119 1120 1121


def dtype_is_floating(dtype):
1122 1123 1124
    """
    Check the data type is floating or not.
    Args:
1125
        dtype(np.dtype|core.VarDesc.VarType): data type.
1126 1127 1128 1129 1130
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1131
    if not isinstance(dtype, core.VarDesc.VarType):
1132 1133
        dtype = convert_np_dtype_to_dtype_(dtype)

1134
    return dtype in [
1135 1136 1137
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1138
    ]
1139 1140


Y
Yang Yang(Tony) 已提交
1141
def _debug_string_(proto, throw_on_error=True):
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1153
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1154
    if not proto.IsInitialized(error_fields) and throw_on_error:
1155 1156
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1157 1158 1159
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1160 1161 1162
    return proto.__str__()


1163
def _create_tensor(
1164 1165 1166 1167 1168
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1169
    **kwargs,
1170
):
1171 1172 1173 1174
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1184 1185


1186 1187 1188 1189 1190 1191 1192
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1193 1194
    if not vals:
        return False
1195 1196 1197
    return all(isinstance(v, expected_type) for v in vals)


1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1293 1294 1295 1296 1297
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1298
            return issubclass(t, core.eager.Tensor)
1299 1300 1301 1302 1303 1304 1305 1306 1307
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1308
            return issubclass(t, EagerParamBase)
1309 1310 1311 1312
        else:
            return issubclass(t, Parameter)


1313
class Variable(metaclass=VariableMetaClass):
1314
    """
J
Jiabin Yang 已提交
1315

U
ustiniankw 已提交
1316 1317 1318 1319
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1320

1321
        In Dygraph Mode: Please use ** :ref:`api_base_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1322 1323

    In Fluid, every input and output of an OP is a variable. In most
1324
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1325 1326
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1327

1328
    There are many kinds of variables. Each kind of them has its own attributes
1329
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/base/framework/framework.proto>`_ for details.
1330

T
tianshuo78520a 已提交
1331
    Most of a Variable's member variables can be set to be None. It mean
1332
    it is not available or will be specified later.
1333

1334
    Examples:
1335 1336
        In Static Graph Mode:

1337
        .. code-block:: python
C
cyberslack_lee 已提交
1338
            :name: code-example-1
1339

1340 1341
            import paddle.base as base
            cur_program = base.Program()
1342 1343 1344 1345
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1346

1347
        In Dygraph  Mode:
1348 1349

        .. code-block:: python
C
cyberslack_lee 已提交
1350
            :name: code-example-2
1351

1352
            import paddle.base as base
1353 1354
            import numpy as np

1355 1356
            with base.dygraph.guard():
                new_variable = base.dygraph.to_variable(np.arange(10))
1357

1358 1359
    """

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1375
        **kwargs,
1376
    ):
Y
Yu Yang 已提交
1377 1378
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1379
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1380

Y
Yu Yang 已提交
1381
        if dtype is not None:
1382
            if not isinstance(dtype, core.VarDesc.VarType):
1383
                dtype = convert_np_dtype_to_dtype_(dtype)
1384

S
Steffy-zxf 已提交
1385 1386 1387 1388
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1389 1390 1391
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1392 1393
        self.belong_to_optimizer = belong_to_optimizer

1394 1395 1396
        self.error_clip = error_clip

        is_new_var = False
1397
        self.desc = self.block.desc.find_var(name.encode())
1398

1399
        if self.desc is None:
1400
            self.desc = self.block.desc.var(name.encode())
1401
            is_new_var = True
1402

1403 1404 1405
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1406 1407 1408 1409 1410
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1411

1412
        if shape is not None:
1413
            if is_new_var:
1414 1415 1416 1417 1418 1419
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1420 1421
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1422 1423
                        "matched.".format(self.name, old_shape, shape)
                    )
1424 1425 1426 1427 1428 1429
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1430 1431 1432 1433 1434 1435
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1436 1437 1438 1439 1440 1441

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1442 1443 1444 1445 1446 1447
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1448 1449 1450 1451 1452 1453
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1454 1455
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1456
                        "persistable is {2}. They are not matched".format(
1457 1458 1459
                            self.name, self.persistable, persistable
                        )
                    )
1460

1461 1462
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1463

1464 1465 1466 1467 1468 1469 1470
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1471

1472 1473
        self.block.vars[name] = self
        self.op = None
1474
        self.stop_gradient = stop_gradient
1475
        self.is_data = is_data
W
wanghuancoder 已提交
1476
        self.is_view_var = False
Y
Yu Yang 已提交
1477

1478 1479
    def detach(self):
        """
U
ustiniankw 已提交
1480

1481
        Returns a new Variable, detached from the current graph.
1482 1483
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1484

1485
        Returns:
U
ustiniankw 已提交
1486
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1487 1488 1489 1490

        Examples:
            .. code-block:: python

1491
                import paddle
1492

1493 1494 1495 1496
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1497

1498 1499
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1500

1501
        """
1502

1503 1504 1505 1506
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1507 1508 1509 1510 1511 1512

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1513 1514
            stop_gradient=True,
        )
1515

1516 1517 1518
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1519
        return output
1520

1521
    @fake_interface_only
1522
    def numpy(self):
1523
        """
J
Jiabin Yang 已提交
1524
        **Notes**:
T
tianshuo78520a 已提交
1525
            **This API is ONLY available in Dygraph mode**
1526

J
Jiabin Yang 已提交
1527
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1528 1529 1530 1531 1532

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1533
            ndarray: dtype is same as current Variable
1534 1535 1536 1537

        Examples:
            .. code-block:: python

1538 1539 1540
                import paddle.base as base
                from paddle.base.dygraph.base import to_variable
                from paddle.base.dygraph import Linear
1541 1542 1543
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1544
                with base.dygraph.guard():
1545
                    linear = Linear(32, 64)
1546
                    data = to_variable(data)
1547
                    x = linear(data)
1548 1549 1550
                    print(x.numpy())

        """
1551
        pass
1552

1553
    @non_static_only
1554
    def backward(self, retain_graph=False):
1555
        """
J
Jiabin Yang 已提交
1556
        **Notes**:
T
tianshuo78520a 已提交
1557
            **This API is ONLY available in Dygraph mode**
1558

1559
        Run backward of current Graph which starts from current Tensor.
1560

J
Jiabin Yang 已提交
1561
        Args:
1562 1563 1564 1565
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1566

J
Jiabin Yang 已提交
1567 1568
        Returns:
            NoneType: None
1569 1570 1571 1572 1573

        Examples:
            .. code-block:: python

                import numpy as np
1574 1575
                import paddle
                paddle.disable_static()
1576 1577

                x = np.ones([2, 2], np.float32)
1578 1579 1580 1581 1582 1583 1584
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1585 1586
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1587
                loss.backward()
1588 1589

        """
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1601

1602
    @fake_interface_only
1603
    def gradient(self):
1604
        """
J
Jiabin Yang 已提交
1605
        **Notes**:
T
tianshuo78520a 已提交
1606
            **This API is ONLY available in Dygraph mode**
1607 1608 1609

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1610
        Returns:
1611
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1612 1613 1614 1615

        Examples:
            .. code-block:: python

1616
                import paddle
1617
                import paddle.base as base
1618 1619
                import numpy as np

1620
                # example1: return ndarray
1621
                x = np.ones([2, 2], np.float32)
1622
                with base.dygraph.guard():
1623 1624
                    inputs2 = []
                    for _ in range(10):
1625
                        tmp = base.dygraph.base.to_variable(x)
1626 1627
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1628
                    ret2 = paddle.add_n(inputs2)
1629
                    loss2 = paddle.sum(ret2)
1630
                    loss2.backward()
1631 1632
                    print(loss2.gradient())

1633
                # example2: return tuple of ndarray
1634
                with base.dygraph.guard():
1635 1636 1637 1638 1639
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1640 1641
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
1642
                    x = base.dygraph.base.to_variable(x_data)
1643 1644 1645 1646
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1647
        """
1648
        pass
1649

1650
    @fake_interface_only
1651
    def clear_gradient(self):
1652
        """
J
Jiabin Yang 已提交
1653
        **Notes**:
T
tianshuo78520a 已提交
1654
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1655 1656

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1657

J
Jiabin Yang 已提交
1658
        Clear  (set to ``0`` ) the Gradient of Current Variable
1659 1660 1661 1662 1663 1664

        Returns:  None

        Examples:
            .. code-block:: python

1665
                import paddle
1666
                import paddle.base as base
1667 1668 1669
                import numpy as np

                x = np.ones([2, 2], np.float32)
1670
                with base.dygraph.guard():
1671 1672
                    inputs2 = []
                    for _ in range(10):
1673
                        tmp = base.dygraph.base.to_variable(x)
1674 1675
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1676
                    ret2 = paddle.add_n(inputs2)
1677
                    loss2 = paddle.sum(ret2)
1678
                    loss2.backward()
1679 1680 1681 1682 1683
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1684
        pass
X
Xin Pan 已提交
1685

1686
    def register_hook(self, hook):
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1704

1705
    def __str__(self):
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1722 1723
                import paddle
                import paddle.static as static
1724

1725 1726 1727
                paddle.enable_static()

                cur_program = static.Program()
1728 1729 1730 1731 1732 1733
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1734 1735
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1736 1737 1738 1739
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1740
            dtype_str = str(self.dtype).split('.')[1]
1741 1742 1743 1744 1745 1746 1747
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1748
        else:
1749
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1750

1751
        if self.is_parameter:
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1762
        from paddle.distributed.auto_parallel.static.dist_context import (
1763 1764 1765
            get_default_distributed_context,
        )

1766
        dist_context = get_default_distributed_context()
1767 1768
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1769 1770 1771
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1772

1773
        return var_str
Y
Yang Yang(Tony) 已提交
1774

F
update  
fengjiayi 已提交
1775
    def to_string(self, throw_on_error, with_details=False):
1776 1777 1778
        """
        Get debug string.

J
Jiabin Yang 已提交
1779 1780 1781 1782 1783
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1784

1785 1786
        Returns:
            str: The debug string.
1787 1788 1789 1790

        Examples:
            .. code-block:: python

1791
                import paddle.base as base
1792
                import paddle
1793

1794
                paddle.enable_static()
1795
                cur_program = base.Program()
1796 1797 1798 1799
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1800
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1801
                print("=============with detail===============")
1802
                print(new_variable.to_string(True, True))
1803
        """
1804
        assert isinstance(throw_on_error, bool) and isinstance(
1805 1806
            with_details, bool
        )
1807
        protostr = self.desc.serialize_to_string()
1808
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1809 1810
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1811
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1812
            for attr_name in additional_attr:
1813
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1814

F
update  
fengjiayi 已提交
1815
        return res_str
1816 1817 1818

    __repr__ = __str__

1819 1820 1821
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1846
    @property
1847
    def stop_gradient(self):
J
Jiabin Yang 已提交
1848 1849 1850
        """
        Indicating if we stop gradient from current Variable

1851
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1852 1853 1854 1855

        Examples:
          .. code-block:: python

1856
            import paddle.base as base
J
Jiabin Yang 已提交
1857 1858
            import numpy as np

1859
            with base.dygraph.guard():
J
Jiabin Yang 已提交
1860 1861 1862
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1863 1864 1865 1866 1867
                linear = base.Linear(13, 5, dtype="float32")
                linear2 = base.Linear(3, 3, dtype="float32")
                a = base.dygraph.to_variable(value0)
                b = base.dygraph.to_variable(value1)
                c = base.dygraph.to_variable(value2)
1868 1869
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1870
                out1.stop_gradient = True
1871
                out = base.layers.concat(input=[out1, out2, c], axis=1)
J
Jiabin Yang 已提交
1872 1873
                out.backward()

1874
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1875 1876
                assert (out1.gradient() == 0).all()
        """
1877
        return self.desc.stop_gradient()
1878

1879 1880
    @stop_gradient.setter
    def stop_gradient(self, s):
1881
        self.desc.set_stop_gradient(s)
1882

1883 1884
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1885 1886 1887 1888 1889 1890 1891 1892
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1893
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1894 1895 1896 1897

        Examples:
          .. code-block:: python

1898 1899
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1900 1901 1902 1903 1904 1905
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1906
        return self.desc.persistable()
1907

Y
Yu Yang 已提交
1908 1909
    @persistable.setter
    def persistable(self, p):
1910
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1937 1938
    @property
    def name(self):
J
Jiabin Yang 已提交
1939 1940 1941
        """
        Indicating name of current Variable

1942
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1943 1944 1945 1946

        Examples:
          .. code-block:: python

1947 1948
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1949 1950 1951 1952 1953 1954
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1955
        return self.desc.name()
Y
Yu Yang 已提交
1956

1957 1958 1959 1960 1961 1962
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1963 1964
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1965

1966 1967 1968
        Examples:
          .. code-block:: python

1969
          import paddle
1970

1971
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1972
          print(x.grad_name) # output is ``x@GRAD``
1973 1974 1975 1976

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1977 1978
    @name.setter
    def name(self, new_name):
1979
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1980

Y
Yu Yang 已提交
1981 1982
    @property
    def shape(self):
J
Jiabin Yang 已提交
1983 1984 1985 1986 1987 1988 1989 1990
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

1991 1992
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
1993 1994 1995 1996 1997 1998 1999
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2000
        # convert to tuple, make it as same as numpy API.
2001
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2002 2003

    @property
F
fengjiayi 已提交
2004
    def dtype(self):
J
Jiabin Yang 已提交
2005 2006 2007 2008 2009 2010 2011 2012
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

2013 2014
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
2015 2016 2017 2018 2019 2020
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2021
        return self.desc.dtype()
Y
Yu Yang 已提交
2022 2023 2024

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2025
        """
2026
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_base_LoDTensor_en` to check the meaning
J
Jiabin Yang 已提交
2027 2028 2029 2030 2031 2032
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2033
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2034 2035 2036 2037

        Examples:
          .. code-block:: python

2038
            import paddle
2039
            import paddle.base as base
2040 2041

            paddle.enable_static()
2042
            cur_program = base.Program()
J
Jiabin Yang 已提交
2043 2044 2045 2046 2047 2048
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2049 2050
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2051 2052
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2053
        return self.desc.lod_level()
Y
Yu Yang 已提交
2054

Y
Yu Yang 已提交
2055 2056
    @property
    def type(self):
J
Jiabin Yang 已提交
2057 2058 2059 2060 2061 2062 2063 2064
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

2065 2066
            import paddle.base as base
            cur_program = base.Program()
J
Jiabin Yang 已提交
2067 2068 2069 2070 2071 2072
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2073
        return self.desc.type()
Y
Yu Yang 已提交
2074

2075 2076 2077
    @property
    def T(self):
        """
U
ustiniankw 已提交
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2110 2111
            stop_gradient=False,
        )
2112 2113 2114 2115 2116
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2117 2118 2119 2120 2121 2122 2123 2124 2125
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2126 2127
        return out

2128 2129 2130
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2131
        Variable. It remains in the current graph, that is, the cloned Variable
2132 2133 2134 2135
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2136
            Variable, The cloned Variable.
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2156 2157
            stop_gradient=self.stop_gradient,
        )
2158

2159 2160 2161
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2162 2163
        return output

W
Wu Yi 已提交
2164
    def _set_error_clip(self, error_clip):
2165
        """
U
ustiniankw 已提交
2166

2167 2168 2169 2170 2171 2172 2173
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2174

2175
        """
2176 2177
        self.error_clip = error_clip

2178 2179
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2180

2181 2182 2183 2184 2185 2186
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2187
        Returns:
2188
            None
U
ustiniankw 已提交
2189

2190 2191 2192 2193 2194 2195 2196
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2197

2198 2199 2200 2201 2202
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2203
        Returns:
2204
            object
U
ustiniankw 已提交
2205

2206 2207 2208 2209 2210
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2211 2212
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2213

2214
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2215

2216 2217 2218 2219 2220 2221 2222 2223
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2224
            raise ValueError("slice step can not be zero")
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2235 2236 2237
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2283 2284 2285
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2286
                    raise IndexError("invalid index")
2287 2288 2289 2290 2291
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2305
    def _cloneVar(self, copy=False):
2306 2307
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2308
                name=unique_name.generate_with_ignorable_key(self.name),
2309 2310
                dtype=self.dtype,
            )
2311 2312 2313 2314
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2315
        new_var = self._cloneVar()
2316 2317 2318 2319 2320 2321
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2322 2323 2324
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2325
        new_var = self._cloneVar()
2326 2327 2328 2329 2330 2331 2332 2333
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2334 2335 2336 2337 2338
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2339
                return self._cloneVar(True)
2340 2341 2342 2343 2344 2345 2346
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2347 2348 2349
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2350 2351 2352
                        start += step
                else:
                    while start > stop:
2353 2354 2355
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2356 2357 2358 2359
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2360
                return self._cloneVar(True)
2361
            index = int(item)
2362 2363 2364
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2365 2366 2367 2368 2369 2370
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2371
        return _getitem_static(self, item)
2372

2373
    def __setitem__(self, item, value):
2374 2375 2376
        from .dygraph.base import in_declarative_mode

        if in_declarative_mode():
2377 2378 2379 2380
            if is_compiled_with_xpu():
                # (NOTE): Currently, there is no index_put_xpu kernel.
                return _setitem_impl_(self, item, value)
            return _setitem_static(self, item, value)
2381 2382 2383 2384
        else:
            raise RuntimeError(
                "In static mode, the __setitem__ (looks like: x[indices] = values) should not be used. Please use x = paddle.static.setitem(x, indices, values)"
            )
2385

2386 2387
    def get_value(self, scope=None):
        """
2388
        Get the value of variable in given scope.
2389 2390

        Args:
2391
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2392 2393 2394 2395
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2396
            Tensor, the value in given scope.
2397 2398 2399 2400 2401

        Examples:
            .. code-block:: python

                import paddle
2402
                import paddle.static as static
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2427 2428
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2429 2430
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2431

2432 2433
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2434 2435 2436 2437
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2438 2439 2440 2441 2442

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2443 2444 2445
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2446 2447 2448 2449 2450
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2451

2452
        Set the value to the tensor in given scope.
2453 2454 2455

        Args:
            value(Tensor/ndarray) : The value to be set.
2456
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2457 2458 2459 2460 2461
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2462

2463 2464 2465 2466
        Examples:
            .. code-block:: python

                import paddle
2467
                import paddle.static as static
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2491

2492 2493 2494
        '''

        # The 'framework' is a low-level module, and 'executor'
2495
        # can not be imported at the begainning of this file.
2496 2497 2498 2499 2500
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2501 2502 2503 2504
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2505 2506 2507

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2508 2509 2510 2511
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2512 2513 2514 2515 2516 2517

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2518 2519 2520
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2531 2532 2533 2534
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2545 2546 2547 2548 2549 2550
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2551 2552 2553 2554 2555 2556 2557
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2558 2559
    def size(self):
        """
U
ustiniankw 已提交
2560

2561
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2562 2563

        Returns:
U
ustiniankw 已提交
2564
            Variable, the number of elements for current Variable
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2578

2579 2580 2581 2582
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2583 2584
            dtype=core.VarDesc.VarType.INT64,
        )
2585

2586 2587 2588
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2589 2590
        return output

2591 2592
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2593

2594 2595 2596 2597 2598
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2599

2600 2601 2602 2603 2604
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2605

2606 2607 2608 2609 2610 2611
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2612 2613
            bool, True if has this attribute.

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2635
    def attr(self, name):
2636 2637 2638 2639 2640 2641 2642
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2643
            int|str|list, The attribute value. The return value
2644 2645 2646 2647 2648
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2649
    def dist_attr(self):
2650
        """
2651
        Get distributed attribute of this Variable.
2652
        """
2653
        return self.desc.dist_attr
2654

2655 2656
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2657
        """
2658
        Set distributed attribute of this Variable.
2659
        """
2660
        self.desc.dist_attr = dist_attr
2661

Y
Yu Yang 已提交
2662

F
fengjiayi 已提交
2663 2664 2665
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2666

2667 2668
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2669 2670 2671 2672
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2673
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2674 2675 2676 2677
        ret_values.append(op_proto)
    return ret_values


2678
class OpProtoHolder:
2679 2680 2681 2682
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2683 2684 2685 2686 2687 2688 2689 2690
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2691 2692
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2693 2694 2695 2696 2697 2698
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2699 2700 2701 2702 2703 2704 2705 2706
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2707 2708
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2709 2710
        return self.op_proto_map[type]

2711 2712
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2713
        custom_op_names = []
2714 2715 2716
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2717 2718 2719
                custom_op_names.append(proto.type)

        return custom_op_names
2720

2721 2722 2723
    def has_op_proto(self, type):
        return type in self.op_proto_map

2724 2725 2726 2727
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2728
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2729
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2730
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2731
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2732 2733
        }

F
fengjiayi 已提交
2734

2735
class Operator:
2736
    """
2737 2738 2739 2740 2741 2742 2743
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2744
        type(str): The type of operator. Default None.
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2765
        Block.append_op or Block._prepend_op instead.
2766 2767 2768 2769

    Examples:
        .. code-block:: python

2770 2771
            import paddle.base as base
            cur_program = base.Program()
2772 2773 2774 2775 2776
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2777
    """
2778

2779
    OP_WITHOUT_KERNEL_SET = {
2780 2781 2782 2783 2784 2785
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
2786
        'pylayer',
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2809
    }
2810

2811 2812 2813
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2824
        if in_dygraph_mode():
2825 2826
            if type is None:
                raise ValueError(
2827 2828
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2829
            self._type = type
M
minqiyang 已提交
2830
            self.attrs = attrs if attrs else {}
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2841
            # attr for static graph mode cuda graph
2842 2843
            self._cuda_graph_attr = _current_cuda_graph_mode

2844 2845 2846
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2847
                op_attrs[
2848 2849
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2850 2851

            role_var_name = op_maker.kOpRoleVarAttrName()
2852 2853 2854 2855
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2856
                op_attrs[role_var_name] = self.block.program._op_role_var
2857 2858 2859 2860 2861

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2862 2863 2864 2865 2866
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2867 2868 2869
                return
            if type is None:
                raise ValueError(
2870 2871
                    "`type` to initialized an Operator can not be None."
                )
2872 2873
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2874 2875 2876
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2877
                        '  File "{}", line {}, in {}'.format(
2878 2879 2880 2881 2882 2883
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2884 2885 2886 2887 2888 2889 2890

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2891 2892 2893 2894 2895 2896 2897 2898
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2899 2900 2901
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2902
                if 'force_cpu' in op_attrs:
2903
                    if (
2904 2905
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2906
                    ) or op_attrs['force_cpu'] != False:
2907 2908 2909
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2910 2911
                            "used at the same time." % type
                        )
2912
            if _current_pipeline_stage is not None:
2913 2914 2915 2916 2917
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2918
                )
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2929 2930 2931
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2932 2933
                    if found:
                        in_args = inputs[in_proto.name]
2934
                        if not isinstance(in_args, (list, tuple)):
2935 2936 2937 2938
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2939 2940
                                % (in_proto.name, len(in_args))
                            )
2941
                        in_arg_names = []
2942
                        for index, arg in enumerate(in_args):
2943
                            if isinstance(arg, str):
2944
                                in_arg_names.append(arg)
2945
                            elif isinstance(arg, bytes):
2946
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2947
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2948
                                in_arg_names.append(arg.name)
2949
                            else:
2950
                                raise TypeError(
2951 2952
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2953
                                )
2954 2955 2956 2957 2958 2959 2960 2961
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2980
                            )
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2991 2992 2993 2994 2995 2996 2997 2998 2999
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
3000 3001
                            % (out_proto.name, len(out_args))
                        )
3002 3003
                    out_arg_names = []
                    for arg in out_args:
3004
                        if isinstance(arg, str):
3005 3006
                            out_arg_names.append(arg)
                        else:
3007
                            out_arg_names.append(arg.name)
3008
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
3009
                        if not in_dygraph_mode():
3010
                            if isinstance(arg, str):
3011 3012 3013
                                block.var(arg).op = self
                            else:
                                arg.op = self
3014 3015
                    self.desc.set_output(out_proto.name, out_arg_names)

3016
            extra_attrs_map = core.get_op_extra_attrs(type)
3017 3018 3019 3020 3021
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3022 3023 3024
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3025 3026 3027
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3028
                for attr_name in extra_attrs_map.keys():
3029 3030 3031 3032 3033
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

3034 3035 3036 3037 3038 3039
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3040 3041
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3071 3072
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3073
                if global_ipu_index >= 0:
3074 3075 3076
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3077
                if global_ipu_stage >= 0:
3078 3079 3080
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3081

3082
            self.desc.check_attrs()
3083

3084 3085 3086 3087
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3088
    def _has_kernel(self, op_type):
3089 3090
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3091
    def to_string(self, throw_on_error):
3092
        """
3093 3094
        Get debug string.

3095
        Args:
3096 3097
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3098

3099 3100
        Returns:
            str: The debug string.
3101 3102

        """
3103
        protostr = self.desc.serialize_to_string()
3104
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3105 3106
        return _debug_string_(proto, throw_on_error)

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

3125
            import paddle.base as base
3126

3127
            cur_program = base.Program()
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3139
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3140 3141
            type(skip_op_callstack)
        )
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3168 3169 3170
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3171 3172 3173
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3184 3185
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3186 3187 3188 3189 3190
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3191 3192
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3193 3194
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3195 3196 3197 3198 3199 3200 3201
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3202 3203
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3204 3205 3206 3207 3208
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3209
            # it is bytes of serialized protobuf
3210 3211 3212 3213 3214
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3215 3216
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3217 3218 3219 3220 3221 3222 3223 3224 3225
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3226 3227 3228
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3229

3230 3231 3232 3233
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3234
        from paddle.distributed.auto_parallel.static.dist_context import (
3235 3236 3237
            get_default_distributed_context,
        )

3238
        dist_context = get_default_distributed_context()
3239 3240
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3241 3242 3243
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3244

3245
        if outputs_str != "{}":
3246 3247 3248 3249 3250 3251
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3252
        else:
3253 3254 3255
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3256 3257
        return op_str

Y
Yang Yang(Tony) 已提交
3258
    def __str__(self):
3259
        return self._to_readable_code()
3260 3261 3262

    __repr__ = __str__

F
fengjiayi 已提交
3263 3264
    @property
    def type(self):
3265
        return self.desc.type()
F
fengjiayi 已提交
3266 3267

    def input(self, name):
3268
        r"""
U
ustiniankw 已提交
3269

3270
        Get the input arguments according to the input parameter name.
3271

3272 3273
        Args:
            name(str): The input parameter name.
3274

3275
        Returns:
U
ustiniankw 已提交
3276
            list, return the list of argument names that associated with \
3277
                the specific parameter name.
U
ustiniankw 已提交
3278

3279
        """
F
fengjiayi 已提交
3280 3281
        return self.desc.input(name)

W
Wu Yi 已提交
3282
    def _rename_input(self, old_name, new_name):
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3293
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3294

W
Wu Yi 已提交
3295
    def _rename_output(self, old_name, new_name):
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3306
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3307

F
fengjiayi 已提交
3308 3309 3310 3311
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3312 3313 3314 3315 3316 3317 3318 3319
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3320
    def output(self, name):
3321
        r"""
3322
        Get output arguments by the output parameter name.
3323

3324 3325
        Args:
            name(str): The output parameter name.
3326

3327 3328 3329
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3330
        """
F
fengjiayi 已提交
3331 3332 3333 3334 3335 3336
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3337 3338 3339 3340 3341 3342
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3343 3344
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3345

F
fengjiayi 已提交
3346
    def has_attr(self, name):
3347
        """
3348 3349
        Whether this Operator has the attribute with name or not.

3350
        Args:
3351
            name(str): the attribute name.
3352

3353 3354
        Returns:
            bool: True if has this attribute.
3355 3356

        """
F
fengjiayi 已提交
3357 3358 3359
        return self.desc.has_attr(name)

    def attr_type(self, name):
3360
        """
3361
        Get the type of attribute by attribute's name.
3362

3363 3364
        Args:
            name(str): the attribute name.
3365

3366 3367
        Returns:
            core.AttrType: the attribute type.
3368
        """
3369
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3370

W
Wu Yi 已提交
3371
    def _set_attr(self, name, val):
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3382 3383
        self._update_desc_attr(name, val)

3384 3385 3386
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3398 3399 3400 3401 3402
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3403
            self.desc.set_block_attr(name, val.desc)
3404
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3405
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3406 3407 3408
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3409 3410
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3411 3412 3413 3414 3415 3416 3417 3418 3419
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3420 3421 3422 3423 3424 3425
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3426 3427 3428 3429 3430 3431 3432
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3433 3434
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3452

F
fengjiayi 已提交
3453 3454
    @property
    def attr_names(self):
3455
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3456 3457

    def attr(self, name):
3458
        """
3459 3460
        Get the attribute by name.

3461
        Args:
3462
            name(str): the attribute name.
3463

3464 3465
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3466 3467
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3468
        return self.desc.attr(name)
Y
Yu Yang 已提交
3469

W
Wu Yi 已提交
3470
    def _block_attr_id(self, name):
3471
        """
G
gongweibao 已提交
3472
        Get the block attribute's id by name.
3473

3474 3475
        Args:
            name(str): the attribute name.
3476

3477 3478
        Returns:
            int: the block index.
3479
        """
W
Wu Yi 已提交
3480
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3481

W
Wu Yi 已提交
3482
    def _block_attr(self, name):
G
gongweibao 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3493
        id = self._block_attr_id(name)
3494
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3495 3496
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3497
    def _blocks_attr(self, name):
G
gongweibao 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3508
        for i in self._blocks_attr_ids(name):
3509
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3510 3511 3512 3513
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3514
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3525
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3538 3539 3540 3541 3542
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3557 3558 3559 3560 3561
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3562 3563 3564 3565 3566 3567
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3568
    def all_attrs(self):
F
fengjiayi 已提交
3569
        """
3570 3571 3572
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3573
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3574 3575 3576 3577
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3578
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3579
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3580
                attr_map[n] = self._block_attr(n)
3581
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3582
                attr_map[n] = self._blocks_attr(n)
3583 3584 3585 3586 3587 3588
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3589

F
fengjiayi 已提交
3590 3591
        return attr_map

3592 3593 3594
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3595 3596 3597 3598

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3599 3600 3601
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3602 3603 3604 3605 3606 3607 3608 3609

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3610 3611
            return False

3612 3613 3614 3615 3616 3617
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3618
    @property
3619
    def dist_attr(self):
3620
        """
3621
        Get distributed attribute of this Variable.
3622
        """
3623
        return self.desc.dist_attr
3624

3625 3626
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3627
        """
3628
        Set distributed attribute of this Variable.
3629
        """
3630
        self.desc.dist_attr = dist_attr
3631

Y
Yu Yang 已提交
3632

W
wanghuancoder 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
@signature_safe_contextmanager
def _stride_in_no_check_dy2st_diff():
    global _stride_in_no_check_dy2st_diff_mode
    _stride_in_no_check_dy2st_diff_mode = True
    try:
        yield
    finally:
        _stride_in_no_check_dy2st_diff_mode = False


def check_if_to_static_diff_with_dygraph(op_type, inplace_map, outputs):
3644 3645 3646 3647
    if (
        op_type == "while"
    ):  # dont' need check while, while is only a wrapper of inner ops, we will stuck in inner op.
        return
W
wanghuancoder 已提交
3648 3649 3650 3651 3652 3653 3654 3655
    if outputs is not None:
        for k, v in outputs.items():
            if isinstance(v, Variable):
                if v.is_view_var and not (
                    op_type == "set_value"
                    and inplace_map.get("Input", None) == "Out"
                ):
                    raise ValueError(
3656
                        'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.base.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
W
wanghuancoder 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
                        % (op_type, k)
                    )
            elif isinstance(v, list):
                for var in v:
                    if isinstance(var, Variable):
                        if var.is_view_var and not (
                            op_type == "set_value"
                            and inplace_map.get("Input", None) == "Out"
                        ):
                            raise ValueError(
3667
                                'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. If you are sure it is safe, you can call with paddle.base.framework._stride_in_no_check_dy2st_diff() in your safe code block.'
W
wanghuancoder 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
                                % (op_type, k)
                            )


def record_is_view_var(op_type, inputs, outputs):
    if op_type == "slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "strided_slice":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "index_select":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "split":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None:
            for out in outputs["Out"]:
                if hasattr(out, "is_view_var"):
                    out.is_view_var = True
    elif op_type == "unsqueeze" or op_type == "unsqueeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "squeeze" or op_type == "squeeze2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "transpose" or op_type == "transpose2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "unbind":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "diagonal":
        if inputs is not None and isinstance(inputs["Input"], list):
            if hasattr(inputs["Input"][0], "is_view_var"):
                inputs["Input"][0].is_view_var = True
        else:
            if hasattr(inputs["Input"], "is_view_var"):
                inputs["Input"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "flatten":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "imag":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "reshape" or op_type == "reshape2":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True
    elif op_type == "as_real":
        if inputs is not None and isinstance(inputs["X"], list):
            if hasattr(inputs["X"][0], "is_view_var"):
                inputs["X"][0].is_view_var = True
        else:
            if hasattr(inputs["X"], "is_view_var"):
                inputs["X"].is_view_var = True
        if outputs is not None and isinstance(outputs["Out"], list):
            if hasattr(outputs["Out"][0], "is_view_var"):
                outputs["Out"][0].is_view_var = True
        else:
            if hasattr(outputs["Out"], "is_view_var"):
                outputs["Out"].is_view_var = True


3855
class Block:
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3870
        use `Program._create_block()` to create a block.
3871 3872 3873 3874

    Examples:
        .. code-block:: python

3875
            import paddle.base as base
3876

3877
            cur_program = base.Program()
3878 3879 3880 3881 3882 3883 3884 3885 3886
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3887
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3888
        self.desc = program.desc.block(idx)
3889
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3890
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3891 3892
        self.program = program

3893
    def __str__(self):
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

3914
            import paddle.base as base
3915

3916
            cur_program = base.Program()
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3928
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3929 3930
            type(skip_op_callstack)
        )
3931 3932 3933 3934 3935 3936 3937
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3938 3939
                op._to_readable_code(skip_op_callstack)
            )
3940 3941
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3942

F
fengjiayi 已提交
3943 3944
    def to_string(self, throw_on_error, with_details=False):
        """
3945 3946
        Get debug string.

F
fengjiayi 已提交
3947 3948
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3949
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3950
            with_details(bool): more details about variables and parameters
3951 3952
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3953

3954 3955
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3956
        """
3957
        assert isinstance(throw_on_error, bool) and isinstance(
3958 3959
            with_details, bool
        )
F
fengjiayi 已提交
3960
        if with_details:
F
fengjiayi 已提交
3961
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3962
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3963 3964 3965
                self.idx,
                self.parent_idx,
            )
3966
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3967
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3968 3969
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3970
            for op in self.ops:
F
fengjiayi 已提交
3971
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3972 3973
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3974 3975 3976
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3977
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3978 3979
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3980 3981 3982

    __repr__ = __str__

Y
Yu Yang 已提交
3983 3984
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3985
        return self.desc.parent
Y
Yu Yang 已提交
3986

Y
Yu Yang 已提交
3987 3988 3989 3990
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3991
    def _set_forward_block_idx(self, idx):
3992 3993 3994 3995 3996 3997 3998 3999 4000
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
4001
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
4002

4003 4004 4005 4006 4007 4008 4009 4010
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
4011 4012
    @property
    def idx(self):
Y
Yu Yang 已提交
4013
        return self.desc.id
Y
Yu Yang 已提交
4014

Q
Qiao Longfei 已提交
4015
    def var(self, name):
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
4029
        if not isinstance(name, str):
M
minqiyang 已提交
4030
            raise TypeError(
4031 4032 4033
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
4034 4035
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
4036
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
4037
        return v
Q
Qiao Longfei 已提交
4038

X
Xin Pan 已提交
4039
    def _find_var_recursive(self, name):
4040 4041 4042 4043 4044 4045 4046
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
4047
            Variable: the Variable with the giving name. Or None if not found.
4048
        """
Y
Yu Yang 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
4073
        return None
Y
Yu Yang 已提交
4074

X
Xin Pan 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
4094

Q
Qiao Longfei 已提交
4095
    def all_parameters(self):
4096
        return list(self.iter_parameters())
4097

4098
    def iter_parameters(self):
4099 4100 4101 4102 4103
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
4104

Y
Yu Yang 已提交
4105
    def create_var(self, *args, **kwargs):
4106
        if in_dygraph_mode():
4107
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
4108
        else:
4109 4110 4111
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
4112
        return var
Y
Yu Yang 已提交
4113

Q
Qiao Longfei 已提交
4114 4115 4116
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
4117
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
4118 4119
        """
        Rename variable in vars and ops' inputs and outputs
4120 4121

        Args:
4122 4123
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
4124 4125 4126 4127 4128 4129 4130 4131

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
4132
        """
4133 4134
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
4135 4136 4137
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4138

T
typhoonzero 已提交
4139
        if not self.has_var(name):
4140
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4141 4142
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4143
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4144 4145 4146 4147 4148 4149
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4150
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4151 4152 4153 4154
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4155
        orig_var_type = v.type
4156
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4157
        # NOTE: v is destroyed by C++ after calling _rename_var.
4158
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4159
        if var_type == "Parameter":
L
Leo Chen 已提交
4160
            if in_dygraph_mode():
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4172
            else:
姜永久 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4185
        elif var_type == "Variable":
4186 4187 4188 4189 4190 4191 4192
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4193

W
Wu Yi 已提交
4194
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4195 4196 4197
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4198
        self._sync_with_cpp()
4199
        return var
T
typhoonzero 已提交
4200

4201 4202 4203
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4204
        self.desc._remove_var(name.encode())
4205 4206
        del self.vars[name]

Y
Yu Yang 已提交
4207 4208
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4209
        param = None
L
Leo Chen 已提交
4210
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4211
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4212
        else:
姜永久 已提交
4213
            param = Parameter(global_block, *args, **kwargs)
4214 4215 4216
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4217

4218
        if 'initializer' in kwargs:
4219 4220 4221 4222 4223

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4224
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4225
                        # are treated as initialization ops that cause error.
4226
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4227 4228
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4229 4230 4231
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4232
                        ]:
4233
                            continue
4234 4235 4236 4237 4238 4239 4240
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4241 4242 4243 4244 4245 4246
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4247
            elif init_ops_len == 1:
4248
                # TODO already inited, do nothing, should log a warning
4249 4250 4251
                pass
            else:
                initializer(param, self)
4252
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4253
        return param
Y
Yu Yang 已提交
4254

Y
Yu Yang 已提交
4255
    def append_op(self, *args, **kwargs):
4256 4257 4258 4259 4260 4261
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
W
wanghuancoder 已提交
4262
        inplace_map = kwargs.get("inplace_map", None)
4263
        op_type = kwargs.get("type", None)
4264
        if in_dygraph_mode():
4265
            attrs = kwargs.get("attrs", {})
4266 4267 4268
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4269 4270 4271 4272 4273 4274
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4275
                type=op_type,
4276 4277 4278 4279
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4280

M
minqiyang 已提交
4281 4282
            # record ops in tracer rather than blocks
            #
4283
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4284
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4285

4286
            _dygraph_tracer().trace_op(
4287
                op_type,
4288 4289 4290 4291 4292 4293
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4294
        else:
4295
            from paddle.base.dygraph.base import param_guard
4296
            from paddle.utils import flatten
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4311

4312
            op_desc = self.desc.append_op()
4313 4314
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4315
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4316 4317
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4318 4319 4320
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
4321 4322
                'pylayer',
                'pylayer_grad',
4323 4324 4325 4326 4327
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
W
wanghuancoder 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336
            from .dygraph.base import in_declarative_mode

            if (
                in_declarative_mode()
                and not _stride_in_no_check_dy2st_diff_mode
            ):
                check_if_to_static_diff_with_dygraph(
                    op_type, inplace_map, outputs
                )
4337 4338
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4339
            with param_guard(inputs), param_guard(outputs):
4340 4341 4342
                op = Operator(
                    block=self,
                    desc=op_desc,
4343
                    type=op_type,
4344 4345 4346 4347
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4348

M
minqiyang 已提交
4349
            self.ops.append(op)
W
wanghuancoder 已提交
4350 4351
            if in_declarative_mode():
                record_is_view_var(op_type, inputs, outputs)
M
minqiyang 已提交
4352

4353 4354
        return op

W
Wu Yi 已提交
4355
    def _insert_op(self, index, *args, **kwargs):
4356 4357 4358 4359 4360 4361 4362 4363 4364
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4365
        self._sync_with_cpp()
F
fangshuixun007 已提交
4366
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4367

4368 4369
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4370
        Insert an Operator according to the giving arguments,
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4385 4386 4387 4388 4389 4390 4391 4392 4393
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4394 4395
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4396
        self.desc._remove_op(index, index + 1)
4397 4398
        del self.ops[index]

W
Wu Yi 已提交
4399
    def _slice_ops(self, start, end):
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4410
        return self.ops[start:end]
Y
Yancey1989 已提交
4411

W
Wu Yi 已提交
4412
    def _prepend_op(self, *args, **kwargs):
4413
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4414 4415
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4427
        else:
4428
            op_desc = self.desc._prepend_op()
4429 4430 4431 4432 4433 4434 4435 4436
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4437
            self.ops.insert(0, op)
4438

Y
Yu Yang 已提交
4439 4440
        return op

W
Wu Yi 已提交
4441
    def _sync_with_cpp(self):
4442
        """
4443 4444
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4445
        """
Q
Qiao Longfei 已提交
4446 4447 4448
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4449 4450 4451 4452
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4453 4454 4455 4456 4457 4458 4459 4460
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4461
                else:
4462 4463 4464 4465 4466 4467
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4468

4469
        # sync variables removed from c++ end
4470
        for var in list(self.vars.keys()):
4471
            if not self.desc.find_var(var.encode()):
4472 4473
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4474
        # sync operators from cpp
4475 4476 4477 4478
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4495 4496 4497 4498 4499

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4500
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4501 4502 4503 4504 4505 4506 4507

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4508 4509 4510 4511 4512
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4513 4514 4515 4516 4517 4518
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4519 4520 4521 4522 4523
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4524 4525 4526 4527
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4528
    def _copy_param_info_from(self, other):
4529
        """
4530 4531
        Copy the information of parameters from the other block.

4532
        Args:
4533 4534 4535 4536 4537
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4538 4539 4540 4541 4542

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4543
            raise TypeError(
4544 4545
                "_copy_param_info_from should be invoked with Block"
            )
4546
        for p in other.iter_parameters():
4547 4548 4549
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4550 4551
                # if the Parameter is pruned, v may be None
                continue
4552
            assert isinstance(v, Variable)
4553
            new_p = None
L
Leo Chen 已提交
4554
            if in_dygraph_mode():
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4567
            else:
姜永久 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4583 4584
            self.vars[new_p.name] = new_p

4585
    def _clone_variable(self, var, force_persistable=True):
4586 4587
        """
        Clone a variable into current block.
4588

4589 4590
        Args:
            var: the variable to be cloned.
4591 4592 4593
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4594 4595

        Returns:
4596
            Variable: the new  variable cloned from 'var' in current block.
4597 4598
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4599 4600 4601
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4602 4603 4604
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4605
        elif var.type == core.VarDesc.VarType.RAW:
4606 4607 4608
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4609 4610 4611 4612 4613 4614
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4615
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4616
                is_data=var.is_data,
4617 4618
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4619 4620 4621 4622 4623 4624 4625
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4626
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4627
                is_data=var.is_data,
4628 4629
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4630
        return ret_var
4631

Y
Yu Yang 已提交
4632

4633 4634 4635 4636
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4637
# of some old Python Variables(all old Python Operators) may have
4638
# been destructed.
4639 4640 4641
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4642 4643 4644 4645
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4646 4647 4648 4649 4650 4651 4652
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4653 4654 4655 4656 4657
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4658
class IrNode:
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4670 4671 4672
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4754
    def remove_input_by_id(self, node_id):
4755 4756 4757 4758 4759 4760
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4761
        self.node.remove_input(node_id)
4762

4763
    def remove_input(self, node):
4764 4765 4766 4767
        """
        Remove a node from inputs.

        Args:
4768
            node(IrNode): the node being removed.
4769
        """
4770
        self.node.remove_input(node.node)
4771

4772
    def append_input(self, node):
4773 4774 4775 4776
        """
        Append a node in inputs.

        Args:
4777
            node(IrNode): the node being appended.
4778
        """
4779
        self.node.append_input(node.node)
4780 4781 4782 4783 4784 4785 4786 4787

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4788
    def remove_output_by_id(self, node_id):
4789 4790 4791 4792 4793 4794
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4795
        self.node.remove_output(node_id)
4796

4797
    def remove_output(self, node):
4798 4799 4800 4801
        """
        Remove a node from outputs.

        Args:
4802
            node(IrNode): the node being removed.
4803
        """
4804
        self.node.remove_output(node.node)
4805

4806
    def append_output(self, node):
4807 4808 4809 4810
        """
        Append a node in outputs.

        Args:
4811
            node(IrNode): the node being appended.
4812
        """
4813
        self.node.append_output(node.node)
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4848 4849 4850
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4851
        super().__init__(node)
4852 4853 4854 4855 4856 4857 4858 4859 4860
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4861 4862 4863
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4864 4865 4866 4867 4868 4869 4870 4871 4872
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4873 4874 4875
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4876 4877
        return self.node.var().persistable()

4878 4879 4880 4881 4882 4883 4884
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4885 4886 4887
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4888 4889 4890 4891 4892 4893 4894 4895 4896
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4897 4898 4899
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4900 4901 4902 4903 4904 4905 4906 4907 4908
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4909 4910 4911
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4912 4913
        return self.node.var().shape()

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4947 4948 4949
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4950
        super().__init__(node)
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4961 4962 4963
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4964 4965
        self.node.op()._rename_input(old_input_name, new_input_name)

4966 4967 4968 4969 4970 4971 4972 4973
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4974 4975 4976
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4977 4978
        self.node.op()._rename_output(old_output_name, new_output_name)

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4989 4990 4991
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
5004 5005 5006
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5007 5008 5009 5010 5011 5012 5013 5014 5015
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
5016 5017 5018
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5019 5020
        return self.node.op().set_type(new_type)

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
5035 5036 5037
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5038
        desc = self.node.op()
5039 5040 5041 5042 5043
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5044
            desc.set_block_attr(name, val.desc)
5045
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5046
            desc.set_blocks_attr(name, [v.desc for v in val])
5047 5048 5049
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5050 5051 5052 5053
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

5054 5055 5056 5057 5058 5059 5060
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
5061 5062 5063
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5064 5065 5066 5067 5068 5069 5070 5071 5072
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
5073 5074 5075
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
5076 5077
        return self.node.op().output_arg_names()

5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


5099
class IrGraph:
5100
    """
5101
    Python IrGraph. Beneath it is a core.Graph, which is used for
5102
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
5103 5104
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
5105 5106 5107 5108
    """

    def __init__(self, graph, for_test=False):
        """
5109 5110
        Construct an IrGraph using core.Graph.

5111 5112 5113 5114 5115
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
5116 5117
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
5118 5119 5120
        self.graph = graph
        self._for_test = for_test

5121 5122 5123 5124
    def clone(self):
        """
        Create a new and duplicated IrGraph.

5125 5126 5127
        Warns:
            The method only clones the graph structure, not its attributes.

5128 5129 5130
        Returns:
            IrGraph: A new and duplicated graph.
        """
5131
        g = self.graph.clone()
5132 5133
        return IrGraph(g, self._for_test)

5134
    def is_test(self):
5135 5136 5137
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
5138 5139
        return self._for_test

W
WangZhen 已提交
5140
    def all_nodes(self):
5141 5142 5143
        """
        Return all nodes included in the graph as a set.
        """
5144
        return {IrNode(node) for node in self.graph.nodes()}
5145

5146
    def all_var_nodes(self):
5147 5148 5149
        """
        Return all variable nodes included in the graph as a set.
        """
5150
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
5151

5152
    def all_persistable_nodes(self):
5153 5154 5155
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
5156 5157
        persistable_nodes = set()
        for node in self.graph.nodes():
5158 5159 5160 5161 5162
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
5163
                persistable_nodes.add(node)
5164
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
5165

5166
    def all_op_nodes(self):
5167 5168 5169
        """
        Return all operator nodes included in the graph as a set.
        """
5170
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
5171

5172 5173 5174 5175 5176 5177
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
5178
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5179 5180 5181 5182 5183 5184 5185 5186 5187
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5188
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5200
            IrVarNode: the created persistable variable node.
5201
        """
5202 5203 5204 5205 5206
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5207
        return IrVarNode(self.graph.create_var_node(var_desc))
5208 5209

    def create_var_node(self, name, var_type, shape, var_dtype):
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5221
            IrVarNode: the created variable node.
5222 5223
        """

5224 5225 5226 5227
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5228
        return IrVarNode(self.graph.create_var_node(var_desc))
5229

5230 5231 5232 5233 5234 5235
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5236
    def create_var_node_from_desc(self, var_desc):
5237 5238 5239 5240 5241 5242 5243 5244
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5245
            IrVarNode: the created variable node.
5246
        """
5247
        return IrVarNode(self.graph.create_var_node(var_desc))
5248 5249

    def create_op_node(self, op_type, attrs, inputs, outputs):
5250 5251 5252 5253 5254 5255 5256
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5257
            outputs(dict): the outputs of the operator node.
5258 5259

        Returns:
5260
            IrOpNode: the created operator node.
5261
        """
5262 5263
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5264
        for attr, value in attrs.items():
5265
            self._update_desc_attr(op_desc, attr, value)
5266
        for input_name, var_nodes in inputs.items():
5267 5268
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5269 5270 5271
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5272
        for output_name, var_nodes in outputs.items():
5273 5274
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5275 5276 5277
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5278
        return IrOpNode(self.graph.create_op_node(op_desc))
5279 5280

    def create_op_node_from_desc(self, op_desc):
5281 5282 5283 5284 5285 5286 5287
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5288
            IrOpNode: the created operator node.
5289
        """
5290
        return IrOpNode(self.graph.create_op_node(op_desc))
5291 5292

    def update_input_link(self, old_input_node, new_input_node, op_node):
5293 5294 5295 5296
        """
        Update the input's link of a operator node.

        Args:
5297 5298 5299
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5300
        """
5301 5302 5303 5304 5305
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5306 5307 5308 5309
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5310
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5311

5312 5313 5314 5315 5316 5317 5318 5319 5320
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5321 5322 5323 5324 5325
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5326 5327 5328 5329 5330 5331
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5332
    def link_to(self, node_in, node_out):
5333 5334 5335 5336
        """
        Connect two nodes.

        Args:
5337 5338
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5339
        """
5340
        assert node_in.node in self.graph.nodes(), (
5341 5342
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5343
        assert node_out.node in self.graph.nodes(), (
5344 5345
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5346 5347
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5348 5349

    def safe_remove_nodes(self, remove_nodes):
5350 5351 5352 5353 5354 5355 5356
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5357
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5358 5359 5360 5361
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5362 5363
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5364

Z
Zhen Wang 已提交
5365 5366 5367 5368 5369 5370 5371 5372
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5373
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5374 5375 5376 5377
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5378
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5379 5380 5381
                        ]
                    else:
                        var_nodes[each_var_name].append(
5382 5383
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5384 5385
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5386
    def has_circle(self):
5387 5388 5389 5390 5391 5392
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5393 5394 5395
        return core.has_circle(self.graph)

    def graph_num(self):
5396 5397 5398 5399 5400 5401
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5402 5403 5404
        return core.graph_num(self.graph)

    def topology_sort(self):
5405 5406 5407
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5408
        Notes: the `graph` can not contain a circle.
5409 5410

        Returns:
Z
Zhen Wang 已提交
5411
            list(IrNode): nodes in topology order.
5412
        """
5413
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5414
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5415 5416

    def build_adjacency_list(self):
5417 5418 5419 5420
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5421
            dict{IrNode: set(IrNode)}: the adjacency list.
5422
        """
5423 5424
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5425
        for k, v in adj_list.items():
5426 5427
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5428

5429 5430 5431 5432 5433 5434 5435 5436
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5437
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5438 5439 5440 5441 5442
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5443 5444
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5445 5446 5447 5448
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5449 5450
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5451 5452 5453
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5454

5455
        remove_ctr_vars = set()
5456
        if remove_ctr_var:
5457
            for node in self.all_var_nodes():
5458 5459 5460
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5461 5462
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5463 5464
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5465 5466 5467 5468 5469 5470
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5471 5472 5473 5474
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5475 5476
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5477 5478 5479 5480 5481 5482 5483
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5484 5485 5486
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5487
        WARN: When the graph includes backward operator nodes, the
5488 5489 5490 5491 5492 5493
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5494
        convert_pass = core.get_pass('graph_to_program_pass')
5495 5496
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5497 5498 5499 5500
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5501 5502 5503 5504 5505 5506 5507 5508
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5509
        assert target_node is not None, (
5510 5511
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5512 5513
        return target_node

5514 5515 5516 5517
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5518 5519 5520 5521 5522
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5523
            desc.set_block_attr(name, val.desc)
5524
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5525
            desc.set_blocks_attr(name, [v.desc for v in val])
5526 5527 5528
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5529 5530 5531 5532 5533
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5534
class Program:
D
dzhwinter 已提交
5535
    """
5536
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5537
    control flow op like conditional_block, while :ref:`api_paddle_base_layers_While` is included,
J
Jiabin Yang 已提交
5538
    it will contain nested block.
5539

J
Jiabin Yang 已提交
5540
    Please reference the
5541
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/base/framework/framework.proto>`_
J
Jiabin Yang 已提交
5542
    for details.
D
dzhwinter 已提交
5543

J
Jiabin Yang 已提交
5544
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5545
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5546 5547 5548 5549 5550 5551 5552
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5553
    **Notes**:
5554 5555 5556
        **we have** :ref:`api_paddle_base_framework_default_startup_program` **and** :ref:`api_paddle_base_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_base_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_base_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5557 5558

    Returns:
J
Jiabin Yang 已提交
5559
        Program: An empty Program.
D
dzhwinter 已提交
5560 5561

    Examples:
5562 5563
        .. code-block:: python

5564 5565 5566 5567
            import paddle
            import paddle.static as static

            paddle.enable_static()
5568

5569 5570 5571 5572 5573
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5574
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5575 5576 5577

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5578 5579 5580

    """

5581 5582
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5583 5584
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5585 5586
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5587
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5588
        self.__op_role_var = []
T
tangwei12 已提交
5589

5590 5591
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5592
        self._is_distributed = False
5593
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5594
        self._is_chief = False
5595 5596 5597
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5598
        self._endpoints = []
5599 5600 5601
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5602
        self._trainers_endpoints = []
5603
        # the distributed lookup table names
T
tangwei12 已提交
5604
        self._distributed_lookup_table = None
5605 5606 5607

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5608 5609
        self._use_lamb = False

5610 5611 5612
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5613

5614 5615 5616
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5617
        self._program_config = None
5618

5619 5620
        self._pass_applied = None

H
hutuxian 已提交
5621 5622 5623
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5624 5625 5626
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5627 5628 5629
        # appending gradients times
        self._appending_grad_times = 0

5630 5631
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5632 5633
            "__auto_checkpoint_program__"
        )
5634

5635 5636
        # compiled program, i.e. Graph
        self._graph = None
5637 5638
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5639

5640
    def _find_var_class_kwargs(self, new_desc):
5641 5642 5643 5644 5645 5646 5647 5648
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5649 5650 5651 5652
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5653
            if idx > (len(self.blocks) - 1):
5654
                self._create_block()
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5706 5707 5708
                }

                if isinstance(old_var, Parameter):
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5726 5727
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5728 5729 5730 5731 5732 5733
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5734 5735 5736 5737 5738 5739 5740

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5741
        assert block_num == self.desc.num_blocks()
5742 5743

        # clear old blocks and desc
5744 5745 5746 5747 5748 5749 5750 5751 5752
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5753

5754
        del desc
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5784 5785
                import paddle
                import paddle.static as static
5786

5787 5788 5789
                paddle.enable_static()

                prog = static.default_main_program()
5790 5791 5792 5793 5794
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5795
                prog1 = static.default_main_program()
5796 5797 5798 5799 5800 5801 5802 5803
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5804
    @property
5805
    def _op_role(self):
Y
yuyang18 已提交
5806 5807 5808 5809 5810 5811 5812 5813
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5814
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5815 5816 5817 5818
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5819 5820
        return self._current_role

5821 5822
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5823 5824 5825
        self._current_role = role

    @property
5826
    def _op_role_var(self):
Y
yuyang18 已提交
5827
        """
5828
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5829

5830
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5831 5832 5833

        Notes: This is a very low-level API. Users should not use it directly.
        """
5834
        return self.__op_role_var
Y
yuyang18 已提交
5835

5836
    @signature_safe_contextmanager
5837 5838 5839 5840 5841
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5842 5843 5844 5845
        try:
            yield
        finally:
            self._current_role = tmp_role
5846

S
rename  
sneaxiy 已提交
5847
    @signature_safe_contextmanager
W
Wu Yi 已提交
5848
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5849 5850 5851 5852 5853 5854 5855
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5856
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5857 5858 5859

        Examples:

5860
            >>> import paddle.base as base
Y
yuyang18 已提交
5861
            >>> p, g = backward(...)
W
Wu Yi 已提交
5862
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5863 5864
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5865
        tmp_role = self._current_role
5866
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5867

Y
yuyang18 已提交
5868 5869
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5870
        self.__op_role_var = [
5871 5872 5873
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5874 5875 5876 5877 5878
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5879

S
rename  
sneaxiy 已提交
5880
    @signature_safe_contextmanager
X
Xin Pan 已提交
5881
    def _lr_schedule_guard(self, is_with_opt=False):
5882 5883 5884 5885 5886 5887 5888
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5889 5890 5891 5892
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5893 5894 5895

        Examples:

5896
            >>> import paddle.base as base
5897 5898 5899 5900
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5901 5902

        tmp_role = self._current_role
5903
        tmp_var = self.__op_role_var
5904

5905 5906
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5907 5908
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5909
        # TODO(typhoonzero): how to set target learning rate var
5910
        self.__op_role_var = []
5911 5912 5913 5914 5915
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5916

5917
    def __str__(self):
Y
yuyang18 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5947 5948
            import paddle
            import paddle.static as static
5949

5950 5951 5952
            paddle.enable_static()

            cur_program = static.Program()
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5964
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5965 5966
            type(skip_op_callstack)
        )
5967 5968 5969
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5970
            program_str += '\n'
5971
        return program_str
Y
Yang Yang(Tony) 已提交
5972

F
fengjiayi 已提交
5973 5974 5975
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5976

J
Jiabin Yang 已提交
5977 5978 5979
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5980

J
Jiabin Yang 已提交
5981
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5982

H
haowang101779990 已提交
5983
        Returns:
J
Jiabin Yang 已提交
5984
            str: The debug string describe current Program.
Y
yuyang18 已提交
5985 5986

        Raises:
J
Jiabin Yang 已提交
5987
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5988

5989 5990 5991
        Examples:
            .. code-block:: python

5992 5993 5994 5995
                import paddle
                import paddle.static as static

                paddle.enable_static()
5996

5997 5998 5999
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
6000
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
6001
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
6002
                print("program string without detail: {}".format(prog_string))
6003
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
6004
        """
6005 6006 6007
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
6008 6009
            type(throw_on_error)
        )
6010 6011 6012
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
6013 6014
            type(with_details)
        )
6015

F
fengjiayi 已提交
6016 6017 6018 6019
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
6036 6037
        else:
            protostr = self.desc.serialize_to_string()
6038
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
6039 6040
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
6041

W
Wu Yi 已提交
6042
    def _get_desc(self):
Y
yuyang18 已提交
6043 6044 6045 6046 6047 6048 6049
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
6050 6051
        return self.desc

X
version  
Xin Pan 已提交
6052 6053 6054
    def _version(self):
        return self.desc._version()

6055
    def clone(self, for_test=False):
Y
yuyang18 已提交
6056
        """
6057
        .. note:::
6058 6059
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
6060
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
6061

6062
        Create a new Program with forward content of original one when ``for_test=True``.
6063
        Create a new Program as same as the original one when ``for_test=False``.
6064

6065
        Some operators, e.g., :ref:`api_paddle_base_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
6066 6067 6068
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
6069

6070 6071
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
6072 6073
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
6074
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
6075

C
cyberslack_lee 已提交
6076 6077 6078
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
6079

C
cyberslack_lee 已提交
6080 6081
                import paddle
                import paddle.static as static
6082

C
cyberslack_lee 已提交
6083
                paddle.enable_static()
6084

C
cyberslack_lee 已提交
6085 6086 6087 6088 6089 6090 6091
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
6092

J
Jiabin Yang 已提交
6093
        Args:
6094

6095 6096
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
6097

J
Jiabin Yang 已提交
6098
        Returns:
6099
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
6100

Y
yuyang18 已提交
6101 6102 6103

        Examples:

6104 6105 6106 6107 6108 6109 6110
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

6111
            .. code-block:: python
C
cyberslack_lee 已提交
6112
                :name: code-example-2
6113

6114
                import paddle
6115 6116

                def print_prog(prog):
6117
                    for name, value in sorted(prog.block(0).vars.items()):
6118 6119 6120 6121 6122
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
6123
                        for key, value in sorted(op.all_attrs().items()):
6124 6125 6126 6127
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


6128
            1. To clone a test program, the sample code is:
6129
                .. code-block:: python
C
cyberslack_lee 已提交
6130
                    :name: code-example-3
6131

6132 6133 6134 6135 6136 6137
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6138 6139

                    def print_prog(prog):
6140
                        for name, value in sorted(prog.block(0).vars.items()):
6141 6142 6143 6144 6145
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6146
                            for key, value in sorted(op.all_attrs().items()):
6147 6148 6149
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

6150 6151
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
6152 6153 6154

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
6155 6156 6157
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
6158
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
6159 6160
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
6161
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6162 6163
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
6164
                            test_program = train_program.clone(for_test=True)
6165
                    print_prog(test_program)
J
Jiabin Yang 已提交
6166 6167 6168 6169

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

6170
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
6171 6172 6173 6174
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

6175 6176 6177
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6178 6179 6180
                            sgd.minimize(avg_loss)


6181
            2. The clone method can be avoid if you create program for training and program for testing individually.
6182
                .. code-block:: python
C
cyberslack_lee 已提交
6183
                    :name: code-example-4
6184

6185 6186 6187 6188 6189 6190
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
6191 6192

                    def print_prog(prog):
6193
                        for name, value in sorted(prog.block(0).vars.items()):
6194 6195 6196 6197 6198
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
6199
                            for key, value in sorted(op.all_attrs().items()):
6200 6201
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6202

6203
                    def network():
6204
                        img = static.data(name='image', shape=[None, 784])
6205
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6206 6207
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6208
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6209 6210
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6211 6212
                        return avg_loss

6213 6214 6215 6216 6217
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6218
                            avg_loss = network()
6219
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6220
                            sgd.minimize(avg_loss)
6221
                    # the test startup program is not used.
6222 6223
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6224 6225
                            avg_loss = network()
                    print_prog(test_program_2)
6226

6227
            The two code snippets above will generate and print same programs.
6228
        """
6229

T
tangwei12 已提交
6230
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6231 6232 6233
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6234
        pruned_origin_block_id_map = None
6235
        if for_test:
6236 6237
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6238 6239
                self.desc
            )
6240 6241
            forward_prog.blocks = [
                Block(forward_prog, i)
6242
                for i in range(forward_prog.desc.num_blocks())
6243 6244 6245
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6246
        else:
6247
            p = Program()
G
gongweibao 已提交
6248 6249
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6250
            p.desc = core.ProgramDesc(self.desc)
6251
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6252 6253

            p._current_role = self._current_role
6254
            p.__op_role_var = self.__op_role_var
6255
            p._appending_grad_times = self._appending_grad_times
6256 6257
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
6258 6259
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
6260

T
tangwei12 已提交
6261
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6262
            # its desc.
W
Wu Yi 已提交
6263
            p._sync_with_cpp()
6264

W
Wu Yi 已提交
6265
        p._copy_param_info_from(self)
6266
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6267
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6268
        return p
6269

6270
    def _prune(self, targets):
Y
yuyang18 已提交
6271 6272 6273 6274 6275 6276 6277 6278
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6279
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6280 6281 6282 6283
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6284
        """
6285
        return self._prune_with_input([], targets)
6286 6287

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6288
        """
6289
        Prune operators and variables which are not needed to generate
6290 6291
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6292 6293 6294 6295 6296 6297 6298

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6299
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6300 6301 6302 6303 6304 6305
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6306
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6307 6308 6309
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6310 6311
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6312 6313
        if not isinstance(targets, list):
            targets = [targets]
6314 6315

        for var in feeded_var_names:
6316
            if not isinstance(var, str):
6317 6318
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6319 6320
                    "str, but received %s." % type(var)
                )
6321

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6338 6339 6340 6341
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6342
                    name = t.name
6343
                elif isinstance(t, str):
6344
                    name = str(t)
6345
                else:
6346 6347
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6348 6349
                        "Variable or Operator, but received %s." % type(t)
                    )
6350 6351 6352 6353 6354 6355

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6356 6357 6358
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6359

6360 6361 6362 6363 6364 6365 6366 6367 6368
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6369
                        # Skip optimize op except for optimize op in targets,
6370 6371 6372 6373 6374
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6375

6376
                if target_op is not None:
6377 6378 6379
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6380

6381
        res = Program()
6382
        res.desc, pruned_origin_block_id_map = core.prune(
6383 6384
            self.desc, set(feeded_var_names), targets_idx
        )
6385
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6386
        res._sync_with_cpp()
6387 6388 6389 6390 6391

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6392 6393
        return res

X
Xin Pan 已提交
6394
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6395
        """
F
fengjiayi 已提交
6396 6397 6398 6399 6400
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6401
        3. change the :code:`is_test`
Y
yuyang18 已提交
6402 6403 6404
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6405
        Args:
X
Xin Pan 已提交
6406 6407
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6408

Y
yuyang18 已提交
6409 6410 6411 6412 6413 6414
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6415
        res = Program()
6416
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6417 6418 6419 6420

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6421
        if prune_read_op:
6422
            while True:
6423 6424 6425 6426
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6427 6428 6429 6430 6431 6432
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6433
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6434 6435

        # change all `is_test` attributes to True
6436
        for i in range(res.desc.num_blocks()):
6437
            block = res.desc.block(i)
6438
            for j in range(block.op_size()):
6439 6440
                op = block.op(j)
                if op.has_attr('is_test'):
6441
                    op._set_bool_attr('is_test', True)
6442 6443 6444
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6445
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6446
        res._sync_with_cpp()
6447 6448
        return res

6449
    def _remove_training_info(self, clip_extra=True):
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6464
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6465 6466
        res._sync_with_cpp()

6467 6468
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6469
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6470

6471
        for i in range(res.desc.num_blocks()):
6472 6473 6474 6475
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6476 6477
            if not clip_extra:
                continue
6478 6479 6480 6481
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6482 6483 6484

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6498 6499 6500
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6514
                # The extra output of op will be removed in the future
6515 6516
                for name in remove_output_list:
                    op.remove_output(name)
6517

6518 6519 6520 6521 6522 6523 6524
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6525 6526
                )
                quant_attrs = [
6527 6528 6529 6530 6531 6532 6533
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6534
                ]
6535 6536
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6537
                remove_attr_list = []
6538 6539 6540 6541 6542 6543
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6544
                    if len(extra_attrs_map) > 0:
6545
                        if name in common_clipped_attrs_list:
6546
                            op.remove_attr(name)
6547
                        continue
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6558 6559
        return res

6560 6561
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6562
        """
6563
        .. note::
6564
            1. All information about parameters will be lost after serialization;
6565
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6566

6567 6568
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6569

J
Jiabin Yang 已提交
6570
        Args:
Y
yuyang18 已提交
6571

J
Jiabin Yang 已提交
6572
            binary_str_type (str): the binary prootbuf string.
6573

J
Jiabin Yang 已提交
6574 6575
        Returns:
            Program: A deserialized Program.
6576 6577 6578 6579

        Examples:
            .. code-block:: python

6580 6581 6582 6583
                import paddle
                import paddle.static as static

                paddle.enable_static()
6584

6585 6586 6587 6588
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6589

6590
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6591

6592
                    z = paddle.matmul(x=x, y=y)
6593

6594 6595
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6596

6597
                    print(static.default_main_program())
6598
                    print(prog_restored)
Y
yuyang18 已提交
6599
        """
6600 6601
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6602
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6603
        p._sync_with_cpp()
6604
        return p
Y
Yu Yang 已提交
6605

6606
    @staticmethod
6607
    def _construct_from_desc(desc):
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6619
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6620 6621 6622
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6623 6624
    @property
    def random_seed(self):
Y
yuyang18 已提交
6625
        """
J
Jiabin Yang 已提交
6626
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6627 6628
        the random seed from random device.

6629
        .. note::
6630
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6631 6632 6633

        Returns:
            int64: Random seed in current Program
6634

6635 6636 6637 6638

        Examples:
            .. code-block:: python

6639 6640 6641
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6642

6643 6644 6645
                paddle.enable_static()

                prog = static.default_main_program()
6646
                random_seed = prog.random_seed
6647
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6648 6649 6650
                print(random_seed)
                ## 0
                ## the default random seed is 0
6651

6652
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6653
                prog.random_seed = 1
6654
                z_var = F.dropout(x_var, 0.7)
6655

6656
                print(prog.random_seed)
6657 6658
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6659
        """
D
dzhwinter 已提交
6660 6661
        return self._seed

Q
qiaolongfei 已提交
6662 6663
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6664
        """
6665 6666
        The number of :ref:`api_guide_Block_en`  in this Program.

6667
        .. note::
6668
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6669 6670 6671

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6672

6673 6674 6675 6676

        Examples:
            .. code-block:: python

6677 6678 6679 6680
                import paddle
                import paddle.static as static

                paddle.enable_static()
6681

6682
                prog = static.default_main_program()
6683 6684
                num_blocks = prog.num_blocks
                print(num_blocks)
6685

6686 6687
                # print result:
                # 1
Y
yuyang18 已提交
6688
        """
Q
qiaolongfei 已提交
6689 6690
        return self.desc.num_blocks()

D
dzhwinter 已提交
6691 6692 6693
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6694 6695
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6696 6697
                % type(seed)
            )
D
dzhwinter 已提交
6698 6699
        self._seed = seed

Y
Yu Yang 已提交
6700
    def __repr__(self):
6701
        return self.__str__()
6702

Y
Yu Yang 已提交
6703
    def global_block(self):
Y
yuyang18 已提交
6704
        """
6705 6706
        .. note::
            This API has no effect in Dygraph mode.
6707 6708 6709

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6710 6711
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6712

6713 6714 6715 6716

        Examples:
            .. code-block:: python

6717 6718 6719 6720
                import paddle
                import paddle.static as static

                paddle.enable_static()
6721

6722
                prog = static.default_main_program()
6723 6724
                gb_block = prog.global_block()
                print(gb_block)
6725

Y
yuyang18 已提交
6726
        """
Y
Yu Yang 已提交
6727 6728
        return self.blocks[0]

Q
Qiao Longfei 已提交
6729
    def block(self, index):
Y
yuyang18 已提交
6730
        """
6731 6732
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6733

6734 6735
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6736 6737
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6738

J
Jiabin Yang 已提交
6739 6740
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6741 6742 6743 6744

        Examples:
            .. code-block:: python

6745 6746 6747 6748
                import paddle
                import paddle.static as static

                paddle.enable_static()
6749

6750
                prog = static.default_main_program()
6751 6752
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6753
        """
Q
Qiao Longfei 已提交
6754 6755
        return self.blocks[index]

Y
Yu Yang 已提交
6756
    def current_block(self):
Y
yuyang18 已提交
6757
        """
6758 6759
        .. note::
            This API has no effect in Dygraph mode.
6760

J
Jiabin Yang 已提交
6761 6762
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6763

J
Jiabin Yang 已提交
6764 6765
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6766

6767 6768 6769
        Examples:
            .. code-block:: python

6770 6771 6772 6773
                import paddle
                import paddle.static as static

                paddle.enable_static()
6774

6775
                prog = static.default_main_program()
6776 6777
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6778
        """
Y
Yu Yang 已提交
6779 6780
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6781
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6782 6783 6784 6785 6786
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6787

Y
yuyang18 已提交
6788 6789 6790 6791 6792
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6793
        new_block_idx = len(self.blocks)
6794 6795 6796 6797 6798
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6799
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6800 6801 6802 6803
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6804
    def _rollback(self):
Y
yuyang18 已提交
6805 6806 6807 6808 6809
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6810 6811
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6812
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6823 6824 6825
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6826
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6827

W
Wu Yi 已提交
6828
    def _copy_param_info_from(self, other):
6829
        """
6830
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6831

Y
yuyang18 已提交
6832 6833 6834
        Notes: This is a very low level API. Users should not invoke it
        directly.

6835 6836 6837 6838 6839 6840 6841
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6842 6843
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6844 6845
                % type(other)
            )
6846

W
Wu Yi 已提交
6847
        self.global_block()._copy_param_info_from(other.global_block())
6848

6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6860 6861
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6862 6863
                % type(other)
            )
6864 6865
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6866
        self._parameters_on_pservers = other._parameters_on_pservers
6867
        self._endpoints = other._endpoints
6868
        self._ps_endpoint = other._ps_endpoint
6869 6870
        self._distributed_lookup_table = other._distributed_lookup_table

6871
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6872 6873
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6874

Y
yuyang18 已提交
6875 6876 6877
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6878 6879
        Args:
            other(Program): Other program
6880
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6881 6882
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6883
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6884 6885 6886 6887 6888

        Returns:
            None
        """
        if not isinstance(other, Program):
6889 6890
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6891 6892
                % type(other)
            )
F
fengjiayi 已提交
6893

6894 6895
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6896
                i: i for i in range(self.desc.num_blocks())
6897
            }
6898 6899 6900

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6901 6902
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6903
            for var in list(block.vars.values()):
6904 6905 6906 6907 6908 6909 6910
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6911

6912
    def list_vars(self):
Y
yuyang18 已提交
6913
        """
6914
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6915

J
Jiabin Yang 已提交
6916
        Returns:
6917
            iterable Tensors: The Generator will yield every Tensor in this program.
6918 6919 6920 6921

        Examples:
            .. code-block:: python

6922 6923
                import paddle
                import paddle.static as static
6924

6925 6926 6927 6928 6929
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6930 6931
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6932

6933 6934
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6935
        """
6936
        for each_block in self.blocks:
6937
            for each_var in list(each_block.vars.values()):
6938 6939
                yield each_var

6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6950 6951 6952 6953
                import paddle
                import paddle.static as static

                paddle.enable_static()
6954

6955 6956
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6957
                hidden = static.nn.fc(x=data, size=10)
6958 6959
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6960 6961 6962 6963 6964 6965 6966

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6967 6968
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6979 6980 6981 6982 6983 6984 6985 6986 6987
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6988 6989 6990
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6991 6992
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6993
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
7021
        # can not be imported at the begainning of this file.
7022 7023
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
7024

7025 7026
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
7027 7028 7029 7030
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
7031 7032 7033 7034 7035

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
7036 7037
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
7038 7039 7040
                    type(mode)
                )
            )
7041 7042 7043 7044 7045

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
7046 7047 7048 7049 7050
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
7068 7069 7070 7071
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
7072 7073 7074 7075 7076 7077 7078 7079

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
7080 7081 7082 7083
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
7084 7085 7086 7087 7088 7089
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
7090
        Set parameters and persistable buffers in state_dict to program.
7091
        An exception will throw if shape or dtype of the parameters is not match.
7092

7093 7094 7095 7096
        .. note::
            This function MUST called after run start_up_program

        Args:
7097
            state_dict(dict): the dict store parameters and persistable buffers.
7098 7099
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
7100
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
7101 7102
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
7103

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
7133 7134 7135
                    type(state_dict)
                )
            )
7136 7137

        vars_dict = {var.name: var for var in self.list_vars()}
7138 7139 7140
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
7152 7153
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7154 7155
                except TypeError as err:
                    warnings.warn(
7156 7157
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
7158
            else:
7159
                warnings.warn(
7160 7161 7162 7163 7164 7165
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
7166

Y
Yu Yang 已提交
7167

7168
class Parameter(Variable, metaclass=ParameterMetaClass):
7169
    """
7170
    Parameter is derived from Variable. A parameter is a persistable
7171
    Variable, and will be updated by optimizers after each iteration.
7172
    The training of a neural network is essentially the updating of
7173 7174
    its parameters.

7175
    Relative to a general Variable, a Parameter has several its own
7176 7177
    member variables:

7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
7188
        need_clip (bool): Whether the parameter gradient need to be cliped
7189
            in optimizer. Default is True.
7190 7191
    """

7192 7193 7194 7195 7196 7197
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
7198
        **kwargs,
7199
    ):
7200 7201 7202 7203 7204
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7205 7206
        for each in shape:
            if each < 0:
7207 7208
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7219
            **kwargs,
7220
        )
Y
Yu Yang 已提交
7221 7222
        self.trainable = kwargs.get('trainable', True)

J
JYChen 已提交
7223 7224
        self.stop_gradient = not self.trainable

Y
Yu Yang 已提交
7225 7226
        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7227 7228
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7229
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7230

7231 7232
        self.need_clip = kwargs.get('need_clip', True)

7233 7234
        self.is_distributed = False

7235 7236
        self.is_parameter = True

F
fengjiayi 已提交
7237
    def __str__(self):
7238
        return self._to_readable_code()
F
fengjiayi 已提交
7239

F
update  
fengjiayi 已提交
7240 7241 7242
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7243

F
update  
fengjiayi 已提交
7244 7245 7246 7247 7248 7249 7250 7251
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7252 7253 7254
        Examples:
            .. code-block:: python

7255
                import paddle.base as base
G
GGBond8488 已提交
7256
                import paddle
7257

7258
                prog = base.default_main_program()
G
GGBond8488 已提交
7259
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7260 7261
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7262
        """
7263
        assert isinstance(throw_on_error, bool) and isinstance(
7264 7265
            with_details, bool
        )
F
update  
fengjiayi 已提交
7266 7267
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7268 7269 7270 7271 7272 7273 7274
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7275
            for attr_name in additional_attr:
7276
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7277 7278
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7279 7280 7281 7282
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7283

W
wanghuancoder 已提交
7284
class EagerParamBase(core.eager.Tensor):
7285
    """
7286 7287
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7305
        need_clip (bool): Whether the parameter gradient need to be cliped
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7320 7321
                    % list(shape)
                )
7322 7323 7324 7325 7326 7327 7328

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7329 7330 7331
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7332
        super().__init__(
7333 7334 7335 7336 7337 7338
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7353 7354 7355
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7356 7357

    def set_init_func(self, obj):
7358
        self._init_func = obj
7359 7360 7361

    @dygraph_only
    def initialize(self):
7362 7363 7364
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7365
        self._init_func(self, None)
7366
        # clear function handle to release resource
7367
        self._init_func = None
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7380 7381
                type(trainable),
            )
7382

7383 7384 7385 7386
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7387 7388 7389
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7390
        self._init_op_creator(self, block)
7391

7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7411
            tensor=super().__str__()
7412
        )
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7442 7443
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7444 7445 7446 7447 7448 7449
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7450 7451
        return new_param

7452 7453 7454
    __repr__ = __str__


Y
Yu Yang 已提交
7455
# program is a global instance.
Y
Yu Yang 已提交
7456 7457
_main_program_ = Program()
_startup_program_ = Program()
7458
_startup_program_._is_start_up_program_ = True
7459

7460

7461
def default_startup_program():
Y
Yu Yang 已提交
7462
    """
Y
yuyang18 已提交
7463 7464
    Get default/global startup program.

7465
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7466
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7467

7468
    This method will return the default or the current startup program. Users can use
7469
    :ref:`api_paddle_base_framework_program_guard`  to switch :ref:`api_paddle_base_framework_Program` .
Y
yuyang18 已提交
7470

7471 7472
    Returns:
        Program: current default startup program.
7473

7474
    Returns type:
7475 7476 7477 7478

    Examples:
        .. code-block:: python

7479
            import paddle
7480

7481
            paddle.enable_static()
7482 7483 7484 7485
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7486
    """
Y
Yu Yang 已提交
7487
    return _startup_program_
7488

7489

7490
def default_main_program():
Y
Yu Yang 已提交
7491
    """
7492
    This API can be used to get ``default main program`` which store the
7493
    descriptions of Ops and tensors.
T
tangwei12 已提交
7494

7495 7496
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7497

7498
    The ``default main program`` is the default value for ``Program`` parameter in
7499
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7500
    :code:`default_main_program` when the program is not specified.
7501

7502
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_base_framework_program_guard` .
T
tangwei12 已提交
7503

Y
Yu Yang 已提交
7504
    Returns:
7505
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7506 7507 7508 7509

    Examples:
        ..  code-block:: python

7510
            import paddle
7511

7512
            paddle.enable_static()
7513
            # Sample Network:
7514
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
7515
            y = paddle.static.data(name='y', shape=[100, 100], dtype='float32')
7516
            out = paddle.add(x, y)
7517

7518 7519 7520
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7521
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7522
    """
Y
Yu Yang 已提交
7523
    return _main_program_
Y
Yu Yang 已提交
7524 7525 7526 7527 7528


def switch_main_program(program):
    """
    Switch the main program to a new program.
7529

Y
Yu Yang 已提交
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7544
    Switch the startup program to a new program
Y
Yu Yang 已提交
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7557
@signature_safe_contextmanager
Y
Yu Yang 已提交
7558 7559
def program_guard(main_program, startup_program=None):
    """
7560 7561
    :api_attr: Static Graph

7562 7563 7564
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7565

G
guofei 已提交
7566
    Args:
7567
        main_program(Program): New main program inside ``with`` statement.
7568 7569
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7570 7571 7572
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7573
    Examples:
C
cyberslack_lee 已提交
7574 7575
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7576

C
cyberslack_lee 已提交
7577
            import paddle
Y
yuyang18 已提交
7578

C
cyberslack_lee 已提交
7579 7580 7581 7582 7583 7584
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7585 7586 7587

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7588

Y
Yu Yang 已提交
7589
    Examples:
C
cyberslack_lee 已提交
7590 7591
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7592

C
cyberslack_lee 已提交
7593
            import paddle
7594

C
cyberslack_lee 已提交
7595 7596 7597 7598 7599
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7600

Y
Yu Yang 已提交
7601
    """
7602
    from .data_feeder import check_type
7603 7604 7605 7606

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7607 7608
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7609 7610 7611 7612 7613 7614
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7615 7616
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7617
        startup_program = switch_startup_program(startup_program)
7618 7619 7620 7621 7622 7623
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7624 7625


W
Wu Yi 已提交
7626
def _get_var(name, program=None):
X
xuwei06 已提交
7627
    """
Y
yuyang18 已提交
7628
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7629

X
xuwei06 已提交
7630 7631 7632
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7633
        If None, default_global_program() will be used.
X
xuwei06 已提交
7634 7635 7636 7637 7638 7639 7640

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7641
    assert isinstance(program, Program)
X
xuwei06 已提交
7642 7643

    return program.global_block().var(name)
7644 7645


7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7659
@signature_safe_contextmanager
L
lujun 已提交
7660
def _dygraph_guard(tracer):
7661 7662
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
M
minqiyang 已提交
7663

C
Charles-hit 已提交
7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
    try:
        yield
    finally:
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7674 7675 7676
    try:
        yield
    finally:
7677
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7678 7679


S
rename  
sneaxiy 已提交
7680
@signature_safe_contextmanager
L
lujun 已提交
7681
def _dygraph_place_guard(place):
7682 7683 7684
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7685 7686
    _set_dygraph_tracer_expected_place(place)

7687 7688 7689
    try:
        yield
    finally:
7690
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7691
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7692 7693


7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7704

7705
    Note:
7706
        The API only supports static graph mode.
7707 7708 7709 7710

    A context manager that specifies the device on which the OP will be placed.

    Args:
7711
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7712
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7713 7714 7715 7716 7717 7718 7719
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7720

7721
        .. code-block:: python
7722

7723
            # required: gpu
Z
Zhang Ting 已提交
7724
            import paddle
7725

Z
Zhang Ting 已提交
7726 7727 7728
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7729
            if support_gpu:
Z
Zhang Ting 已提交
7730
                place = paddle.CUDAPlace(0)
7731 7732

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7733 7734 7735
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7736

Z
Zhang Ting 已提交
7737
            with paddle.static.device_guard("cpu"):
7738
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7739 7740
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7741
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7742
                out = paddle.reshape(data1, shape=shape)
7743

Z
Zhang Ting 已提交
7744 7745
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7746 7747 7748
            result = exe.run(fetch_list=[out])
    """

7749 7750 7751 7752 7753
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7754 7755 7756 7757
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7758
        raise ValueError(
7759
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7760 7761
            "when there is no need to specify device. But received %s" % device
        )
7762 7763
    if index:
        device = ":".join([device, index])
7764
    pre_device = switch_device(device)
7765 7766 7767 7768
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7769 7770


7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7783
        The API only supports static graph mode.
7784

7785
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7786 7787 7788 7789 7790

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7791
    assert (
7792
        not in_dygraph_mode()
7793
    ), "cuda_graph_guard only works under static graph mode"
7794 7795
    assert (
        core.is_compiled_with_cuda()
7796 7797 7798 7799 7800 7801 7802 7803
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7804 7805 7806
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7807
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7808 7809 7810 7811 7812 7813 7814

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7815 7816
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7817 7818 7819 7820
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7821 7822
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7823 7824
        else:
            raise ValueError(
7825 7826
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7827 7828 7829 7830 7831


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7832
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7843
            import paddle
G
guofei 已提交
7844 7845

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7846
            res = paddle.get_flags(flags)
G
guofei 已提交
7847 7848 7849 7850 7851 7852
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7853
            if _global_flags().is_public(key):
7854
                value = _global_flags()[key]
G
guofei 已提交
7855 7856 7857 7858
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7859 7860 7861
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7862
    elif isinstance(flags, str):
7863
        if _global_flags().is_public(flags):
7864
            value = _global_flags()[flags]
G
guofei 已提交
7865 7866 7867 7868
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7869 7870
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7871 7872 7873
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7874 7875 7876 7877 7878 7879


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7892 7893 7894 7895
        return place

    if not isinstance(place, str):
        raise ValueError(
7896 7897
            "place only support string which is 'Place' and so on."
        )
7898 7899

    place = place.lower()
7900
    if place == "cpu":
7901
        return core.CPUPlace()
7902

7903
    if place == "device":
7904 7905
        return core.Place()

7906
    # GPU
7907 7908 7909 7910
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7911
                "The device should not be {}, since PaddlePaddle is "
7912
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7913
            )
7914 7915 7916 7917 7918 7919 7920 7921 7922
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7923 7924

    # XPU
7925 7926 7927 7928
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7929
                "The device should not be {}, since PaddlePaddle is "
7930
                "not compiled with XPU".format(avaliable_xpu_place.group())
7931
            )
7932 7933 7934 7935
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7936

J
jianghaicheng 已提交
7937 7938 7939 7940 7941
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7942
                "The device should not be {}, since PaddlePaddle is "
7943
                "not compiled with IPU".format(avaliable_ipu_place.group())
7944
            )
J
jianghaicheng 已提交
7945 7946 7947 7948 7949
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7950 7951 7952 7953 7954 7955 7956
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7957
    raise ValueError(
7958
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7959
    )
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret