operator.h 30.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
37
#include "paddle/fluid/framework/shape_inference.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/tensor.h"
39
#include "paddle/fluid/framework/unused_var_check.h"
40
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/device_context.h"
42

43 44
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
45
#include "paddle/phi/core/flags.h"
46
#include "paddle/phi/core/kernel_context.h"
47
#include "paddle/phi/core/kernel_factory.h"
48
#include "paddle/phi/core/macros.h"
49
#include "paddle/utils/flat_hash_map.h"
50

W
wanghuancoder 已提交
51 52 53 54 55 56 57 58
namespace paddle {
namespace framework {
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

59 60 61 62
namespace phi {
class KernelContext;
}

63
PHI_DECLARE_int32(inner_op_parallelism);
Q
Qiao Longfei 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68
/// If a variable is a empty variable, that name will be used.
69
constexpr char kEmptyVarName[] = "@EMPTY@";
70 71 72

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
73
constexpr char kTempVarName[] = "@TEMP@";
74 75

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
76 77
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
78
constexpr char kGradVarSuffix[] = "@GRAD";
79

M
minqiyang 已提交
80 81
constexpr size_t kGradVarSuffixSize = 5U;

82
/// Variables with this suffix are supposed to be filled up with zeros.
83
constexpr char kZeroVarSuffix[] = "@ZERO";
84

C
chengduo 已提交
85 86 87
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
88 89 90 91 92 93 94 95
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
96 97 98 99 100 101 102 103 104
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
105
// define some kernel priority
106
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
107 108
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

109
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
110 111 112 113 114
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
115 116
}

M
minqiyang 已提交
117
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
118
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
119 120 121 122 123
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
124 125
}

126
inline bool VarIsTensor(const Variable& var) {
127
  return var.IsType<phi::DenseTensor>() || var.IsType<phi::SelectedRows>();
128 129
}

130 131 132
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var);
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
133

134
class ExecutionContext;
W
wanghuancoder 已提交
135
class OperatorBase;
136

X
Xin Pan 已提交
137 138
class RuntimeContext {
 public:
X
Xin Pan 已提交
139
  RuntimeContext(const VariableNameMap& innames,
140 141
                 const VariableNameMap& outnames,
                 const Scope& scope);
X
Xin Pan 已提交
142

X
Xin Pan 已提交
143 144 145 146
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
147 148 149 150
  VariableValueMap inputs;
  VariableValueMap outputs;
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx);

  bool HasInput(const std::string& name) const override;

  bool HasOutput(const std::string& name) const override;

  bool HasAttr(const std::string& name) const override;

  bool HasInputs(const std::string& name) const override;

  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override;

  AttrReader Attrs() const override;

  std::vector<std::string> Inputs(const std::string& name) const override;

  std::vector<std::string> Outputs(const std::string& name) const override;

  std::string GetInputNameByIdx(size_t idx) const override;

  std::string GetOutputNameByIdx(size_t idx) const override;

  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
                size_t j = 0) override;

  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override;

  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
                size_t j = 0) const override;

  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override;

  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
                   size_t j = 0) const override;

  bool IsRuntime() const override;

  bool IsRunMKLDNNKernel() const override;

  // TODO(paddle-dev): Can this be template?
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override;

  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override;

  DDim GetInputDim(const std::string& name) const override;

  std::vector<DDim> GetInputsDim(const std::string& name) const override;

  proto::VarType::Type GetInputVarType(const std::string& name) const override;

  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override;

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override;

  void SetOutputDim(const std::string& name, const DDim& dim) override;

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override;

  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override;

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override;

  void SetSkipLoD(bool skip);

P
pangengzheng 已提交
229 230 231 232
  std::vector<LoD> GetOutputsLod(const std::string& out) const;

  std::vector<DDim> GetOutputsDim(const std::string& name) const;

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
 protected:
  DDim GetDim(Variable* var) const;

  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const;

  std::vector<DDim> GetRepeatedDims(const std::string& name) const override;

  void SetDim(Variable* var, const DDim& dim);

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims);

  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override;

  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const;

  proto::VarType::Type GetVarType(Variable* var) const;

 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const;

  const std::vector<Variable*>& OutputVars(const std::string& name) const;

  const OperatorBase& op_;
  const RuntimeContext& ctx_;
  bool can_skip_lod_{false};
};

Q
Qiao Longfei 已提交
263
/**
X
Xin Pan 已提交
264
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
265 266 267 268 269 270
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
271 272 273 274
  OperatorBase(const std::string& type,
               const VariableNameMap& inputs,
               const VariableNameMap& outputs,
               const AttributeMap& attrs);
275

Q
Qiao Longfei 已提交
276 277
  virtual ~OperatorBase() {}

278
  /// Executor will call this interface function to Run an op.
279 280
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
281

T
typhoonzero 已提交
282 283 284
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

285
  /// if scope is not null, also show dimensions of arguments
286
  virtual std::string DebugStringEx(const Scope* scope) const;
287
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
288

289
  virtual bool SupportGPU() const { return false; }
290
  virtual bool SupportXPU() const { return false; }
291

292 293
  const std::string& Type() const { return type_; }

294 295 296
  bool HasAttr(const std::string& name) const {
    return attrs_.count(name) || runtime_attrs_.count(name);
  }
297 298
  template <typename T>
  inline const T& Attr(const std::string& name) const {
299 300 301 302 303 304 305 306 307 308 309
    auto it = attrs_.find(name);
    if (it == attrs_.end()) {
      it = runtime_attrs_.find(name);
      PADDLE_ENFORCE_NE(
          it,
          runtime_attrs_.end(),
          platform::errors::NotFound(
              "(%s) is not found in AttributeMap and RuntimeAttributeMap.",
              name));
    }
    return PADDLE_GET_CONST(T, it->second);
310
  }
311 312
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
313 314
        HasAttr(name),
        true,
315 316 317 318 319
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
320
  const AttributeMap& Attrs() const { return attrs_; }
321 322 323 324
  const AttributeMap& RuntimeAttrs() const { return runtime_attrs_; }
  void SetRuntimeAttributeMap(const AttributeMap& runtime_attrs) {
    runtime_attrs_ = runtime_attrs;
  }
D
dongzhihong 已提交
325

Y
Yu Yang 已提交
326 327
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
328 329
  VariableNameMap& Inputs() { return inputs_; }
  VariableNameMap& Outputs() { return outputs_; }
330

S
sneaxiy 已提交
331
  const OpInfo& Info() const {
332
    PADDLE_ENFORCE_NOT_NULL(
333 334 335
        info_,
        platform::errors::NotFound("OpInfo of operator (%s) is not found.",
                                   type_));
S
sneaxiy 已提交
336 337 338
    return *info_;
  }

339
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
340
  //! Get a input with argument's name described in `op_proto`
341
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
342
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
343
  const std::vector<std::string>& Inputs(const std::string& name) const;
344
  //! Get all inputs variable names
Q
qijun 已提交
345 346
  std::vector<std::string> InputVars() const;

347
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
348
  //! Get a output with argument's name described in `op_proto`
349
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
350 351
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
352
  const std::vector<std::string>& Outputs(const std::string& name) const;
353
  //! Get all outputs variable names
Y
Yu Yang 已提交
354
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
355

356
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
357

358
  virtual void SetIsRuntimeInferShape(bool x UNUSED) {}
P
pangengzheng 已提交
359

360 361 362
  virtual void RuntimeInferShape(const Scope& scope UNUSED,
                                 const platform::Place& place UNUSED,
                                 const RuntimeContext& ctx UNUSED) const {}
363

Z
Zhang Ting 已提交
364 365 366 367 368
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

369 370 371 372
  uint64_t Id() const { return id_; }

  void SetId(uint64_t id) { id_ = id; }

Q
qiaolongfei 已提交
373
 protected:
Q
Qiao Longfei 已提交
374
  std::string type_;
D
dongzhihong 已提交
375
  // NOTE: in case of OpGrad, inputs_ contains:
376
  // I (Inputs)
D
dongzhihong 已提交
377 378
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
379
  VariableNameMap inputs_;
Y
Yu Yang 已提交
380

D
dongzhihong 已提交
381 382
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
383
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
384
  AttributeMap attrs_;
385 386 387 388 389 390
  // NOTE: runtime_attrs_ contains the attributes which used for dispatching
  // kernel (use_mkldnn, use_cudnn, ...) or passing additional configuration
  // for special heterogeneous kernel (workspace_size_MB, ...).
  // The attributes in runtime_attrs_ are setted by framework (such as PASS),
  // and not in the python api.
  AttributeMap runtime_attrs_;
S
sneaxiy 已提交
391 392 393 394

  // OpInfo
  const OpInfo* info_;

395 396 397
  // OpDesc Id
  uint64_t id_ = UINT64_MAX;

398 399
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
400 401 402 403

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
404 405
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
406 407
};

408
class ExecutionContext : public phi::KernelContext {
Y
Yan Chunwei 已提交
409
 public:
410 411
  ExecutionContext(const OperatorBase& op,
                   const Scope& scope,
X
Xin Pan 已提交
412
                   const platform::DeviceContext& device_context,
413 414
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
415
  virtual ~ExecutionContext() {}
416

H
hong 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
437 438 439

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
440
  template <typename T>
Y
Yu Yang 已提交
441
  inline const T& Attr(const std::string& name) const {
R
Ruibiao Chen 已提交
442
    return PADDLE_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
443 444
  }

H
hong 已提交
445
  virtual const Attribute& GetAttr(const std::string& name) const {
446 447
    auto iter = op_.Attrs().find(name);
    if (iter == op_.Attrs().end()) {
448 449 450 451 452 453 454 455
      iter = op_.RuntimeAttrs().find(name);
      PADDLE_ENFORCE_NE(
          iter,
          op_.RuntimeAttrs().end(),
          platform::errors::NotFound("(%s) is not found in AttributeMap and "
                                     "RuntimeAttributeMap of (%s) operator.",
                                     name,
                                     op_.Type()));
456
    }
457
    return iter->second;
H
hong 已提交
458
  }
459

H
hong 已提交
460
  virtual bool HasInput(const std::string& name) const;
461

462 463
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
464
  virtual bool HasOutput(const std::string& name) const;
465

H
hong 已提交
466
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
467
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
468 469
  }

H
hong 已提交
470
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
471
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
472 473
  }

H
hong 已提交
474
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
475

H
hong 已提交
476
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
477

H
hong 已提交
478
  virtual const std::vector<Variable*> MultiInputVar(
479
      const std::string& name) const {
480 481
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
482 483 484 485
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
486
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
487 488
  }

H
hong 已提交
489
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
490 491 492 493 494 495 496
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
497 498
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
499 500 501
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
502
      vec_temp.push_back(&input.first);
H
hong 已提交
503 504 505 506 507
    }

    return vec_temp;
  }

508 509
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
510
    auto* var = InputVar(name);
511
    return var == nullptr ? nullptr : &var->Get<T>();
512 513 514 515
  }

  template <typename T>
  T* Output(const std::string& name) const {
516
    auto var = OutputVar(name);
517
    return var == nullptr ? nullptr : var->GetMutable<T>();
518 519 520 521
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
522 523
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
524 525
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
526 527 528 529
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
530 531 532
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
H
hong 已提交
533
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
534 535 536 537 538 539 540
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
541 542 543
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
544 545
      return {};
    }
H
hong 已提交
546

X
Xin Pan 已提交
547 548
    std::vector<T*> res;
    res.reserve(vars.size());
549 550 551
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
X
Xin Pan 已提交
552 553 554
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
555

X
Xin Pan 已提交
556 557 558
    return res;
  }

559
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
560

Q
QI JUN 已提交
561 562 563 564 565
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

566
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
567
    return device_context_;
Q
qijun 已提交
568
  }
Q
qijun 已提交
569

570
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
571
  const inline phi::GPUContext& cuda_device_context() const {
572 573
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()),
                      true,
574 575
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
L
Leo Chen 已提交
576
    return *reinterpret_cast<const phi::GPUContext*>(&device_context_);
Q
QI JUN 已提交
577 578 579
  }
#endif

X
Xin Pan 已提交
580
  template <typename T, typename DevContext>
581 582
  phi::DenseTensor AllocateTmpTensor(const framework::DDim& dim,
                                     const DevContext& dev_ctx) const {
583 584 585 586
    phi::DenseTensor tmp;
    tmp.Resize(dim);
    dev_ctx.template Alloc<T>(&tmp);
    return tmp;
X
Xin Pan 已提交
587 588
  }

H
hong 已提交
589 590 591
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
592
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
593

594
 private:
595 596
  const OperatorBase& op_;
  const Scope& scope_;
597
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
598
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
599 600
};

601
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
602
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
603 604 605 606 607
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
608
    return ctx_.HasInputs(name);
609 610 611 612 613 614
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

615 616 617 618
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

619 620 621
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
622 623 624
  }

  size_t InputSize(const std::string& name) const override {
625
    return ctx_.MultiInputVar(name).size();
626 627 628
  }

  size_t OutputSize(const std::string& name) const override {
629
    return ctx_.MultiOutputVar(name).size();
630 631 632
  }

  bool IsDenseTensorInput(const std::string& name) const override {
633 634 635 636 637
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
638 639 640 641
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
642 643
  }

Y
YuanRisheng 已提交
644 645 646 647 648 649 650
  bool IsSelectedRowsInputs(const std::string& name) const override {
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
  }

651
  bool IsSelectedRowsInput(const std::string& name) const override {
652 653
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
654 655
  }

656
  bool IsDenseTensorVectorInput(const std::string& name) const override {
657 658 659 660
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
661 662
  }

663 664 665 666 667
  bool IsSparseCooTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCooTensor>();
  }

668 669 670 671 672 673 674
  bool IsSparseCooTensorOutput(const std::string& name) const override {
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SparseCooTensor>();
    });
  }

675 676 677 678 679
  bool IsSparseCsrTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCsrTensor>();
  }

680
  bool IsDenseTensorOutput(const std::string& name) const override {
681 682 683 684
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
685 686 687
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
688 689 690 691
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
692 693
  }

694 695
  bool IsForInferShape() const override { return false; }

696 697 698 699
 private:
  const ExecutionContext& ctx_;
};

700
template <>
701 702
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const;
703 704

template <>
705
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
706 707
    const std::string& name) const;

Y
Yu Yang 已提交
708
class OpKernelBase {
Q
qijun 已提交
709
 public:
Q
qijun 已提交
710
  /**
711
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
712 713
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
714
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
715 716
   */

717
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
718

Y
Yu Yang 已提交
719 720 721 722 723 724 725
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
726 727
};

Y
Yu Yang 已提交
728 729
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
730
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
731
  using OpKernelMap =
Y
yuyang18 已提交
732
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
733

734 735 736
  OperatorWithKernel(const std::string& type,
                     const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
737 738 739
                     const AttributeMap& attrs);

  virtual ~OperatorWithKernel();
Y
Yu Yang 已提交
740

C
chentianyu03 已提交
741
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
742
  AllOpKernels() {
C
chentianyu03 已提交
743
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
744
    return g_all_op_kernels;
Y
Yu Yang 已提交
745
  }
Y
Yan Chunwei 已提交
746

747 748
  bool SupportGPU() const override;

749 750
  bool SupportXPU() const override;

751
  bool SupportsMKLDNN(phi::DataType data_type) const;
752

753
  bool SupportsCUDNN(phi::DataType data_type) const;
754

755 756
  bool SupportsKernelType(const OpKernelType& kernel_type,
                          const ExecutionContext& exe_ctx) const;
757

758 759 760
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       phi::DataType data_type) const;

761 762
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
763

764 765 766
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      phi::DataType data_type) const;

767 768 769
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      proto::VarType::Type data_type) const;

770
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
771

P
pangengzheng 已提交
772 773 774 775
  void SetIsRuntimeInferShape(bool x) override {
    all_kernels_must_compute_runtime_shape_ = x;
  }

776 777
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place,
X
Xin Pan 已提交
778
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
779

780 781 782
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

783
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
784 785
      const ExecutionContext& ctx,
      const std::string& name1,
786 787
      const std::string& name2) const;

788 789
  virtual phi::KernelKey GetExpectedKernelType(
      const ExecutionContext& ctx) const;
X
Xin Pan 已提交
790

791 792
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
793
  virtual phi::KernelKey GetKernelTypeForVar(
794
      const std::string& var_name,
795
      const phi::DenseTensor& tensor,
796
      const phi::KernelKey& expected_kernel_type) const;
Y
Yu Yang 已提交
797

798
  platform::Place GetExecutionPlace(
799
      const platform::Place& platform UNUSED) const override {
Z
Zhang Ting 已提交
800 801 802
    return kernel_type_->place_;
  }

803
  /* member functions for adapting to phi lib */
804 805 806 807 808 809 810
  /** In the phi::DenseTensor calculation library, the new Kernel adopts a
   * clearer and more streamlined design. The arguments of the Kernel and the
   * input and output arguments registered in the original OpMaker do not match
   * in some cases, so we use map to record the arguments required by the
   * kernel. When selecting Kernel during Op execution, select the arguments of
   * the original Op according to the GetExpectedPhiKernelArgs returned
   * arguments.
811
   */
812
  phi::KernelSignature GetExpectedPhiKernelArgs(
813 814
      const ExecutionContext& ctx) const;

815 816
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
817

818
  void ChooseKernel(const ExecutionContext& ctx) const;
819

820 821
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
822
                             phi::KernelContext* phi_kernel_context) const;
823

824
  phi::KernelSignature* PhiKernelSignature() const {
825
    return kernel_signature_.get();
826 827
  }

828
  phi::Kernel* PhiKernel() const { return phi_kernel_.get(); }
829

830
  void ResetPhiKernel(phi::Kernel* kernel) const {
831
    return phi_kernel_.reset(kernel);
832 833
  }

834
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }
835
  const OpKernelFunc* kernel_func() const { return kernel_func_.get(); }
836

837 838 839 840
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

841 842 843 844
  bool DnnFallback() const { return dnn_fallback_; }

  void SetDnnFallback(bool dnn_fallback) const { dnn_fallback_ = dnn_fallback; }

Y
Yu Yang 已提交
845
 private:
846
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
847 848
  void RunImpl(const Scope& scope,
               const platform::Place& place,
L
luotao1 已提交
849
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
850 851

  /**
T
tianshuo78520a 已提交
852
   * Transfer data from scope to a transferred scope. If there is no data need
853
   * to be transferred, it returns nullptr.
Y
yuyang18 已提交
854
   *
855
   * transfered_inplace_vars is a output vector.
Y
yuyang18 已提交
856
   */
X
Xin Pan 已提交
857
  Scope* PrepareData(const Scope& scope,
858
                     const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
859
                     std::vector<std::string>* transfered_inplace_vars,
860 861
                     RuntimeContext* ctx,
                     const phi::Place& place) const;
Y
yuyang18 已提交
862

863 864 865 866
  void CheckWhetherPreparePhiData(const VariableNameMap& innames,
                                  const VariableNameMap& outnames,
                                  const Scope& scope) const;

Y
yuyang18 已提交
867 868 869
  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
870

871 872
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

873 874 875
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

876 877 878 879 880
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
881 882
  void ParseInputDataType(const Variable* vars,
                          const std::string& name,
883
                          proto::VarType::Type* data_type) const;
884 885 886
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
887
  // used for IndicateOrPromoteVarDataTypes
888 889
  phi::DenseTensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                             const std::string& name) const;
890

891
 protected:
L
Liu Yiqun 已提交
892 893
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
894
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
C
csy0225 已提交
895
  mutable const Scope* pre_scope_ = nullptr;
896
  mutable bool need_prepare_data_ = true;
897
  mutable bool need_prepare_phi_data_ = false;
898 899
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
900
  mutable std::mutex cache_update_mutex_;
901
  mutable bool enable_cache_transfer_scope_ = false;
902 903 904 905
  // NOTE(jiahongyu): Whether fallback to plain kernel after calling
  // GetExpectedKernelType, use this bool flag to solve mkldnn and cudnn hard
  // code
  mutable bool dnn_fallback_ = false;
906
  // NOTE(chenweihang): Similar op members are used to adapt to
907
  // new phi kernel, if there is a better design in the future,
908
  // we may polish the implementation here
909
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
910
  mutable bool run_kp_kernel = false;
911
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
912
  mutable std::unique_ptr<phi::Kernel> phi_kernel_;
913
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
914

915
 private:
916
  struct CacheImpl;
917
  mutable std::unique_ptr<CacheImpl> impl_;
Q
Qiao Longfei 已提交
918 919
};

Y
Yu Yang 已提交
920 921
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
922 923
}  // namespace framework
}  // namespace paddle