operator.h 30.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
37
#include "paddle/fluid/framework/shape_inference.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/tensor.h"
39
#include "paddle/fluid/framework/unused_var_check.h"
40
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/device_context.h"
42

43 44
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
45
#include "paddle/phi/core/kernel_context.h"
46
#include "paddle/phi/core/kernel_factory.h"
47
#include "paddle/phi/core/macros.h"
48
#include "paddle/utils/flat_hash_map.h"
49

W
wanghuancoder 已提交
50 51 52 53 54 55 56 57
namespace paddle {
namespace framework {
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

58 59 60 61
namespace phi {
class KernelContext;
}

Q
Qiao Longfei 已提交
62 63
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
64 65 66
namespace paddle {
namespace framework {

67
/// If a variable is a empty variable, that name will be used.
68
constexpr char kEmptyVarName[] = "@EMPTY@";
69 70 71

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
72
constexpr char kTempVarName[] = "@TEMP@";
73 74

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
75 76
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
77
constexpr char kGradVarSuffix[] = "@GRAD";
78

M
minqiyang 已提交
79 80
constexpr size_t kGradVarSuffixSize = 5U;

81
/// Variables with this suffix are supposed to be filled up with zeros.
82
constexpr char kZeroVarSuffix[] = "@ZERO";
83

C
chengduo 已提交
84 85 86
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
87 88 89 90 91 92 93 94
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
95 96 97 98 99 100 101 102 103
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
104
// define some kernel priority
105
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
106 107
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

108
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
109 110 111 112 113
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
114 115
}

M
minqiyang 已提交
116
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
117
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
118 119 120 121 122
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
123 124
}

125
inline bool VarIsTensor(const Variable& var) {
126
  return var.IsType<phi::DenseTensor>() || var.IsType<phi::SelectedRows>();
127 128
}

129 130 131
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var);
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
132

133
class ExecutionContext;
W
wanghuancoder 已提交
134
class OperatorBase;
135

X
Xin Pan 已提交
136 137
class RuntimeContext {
 public:
X
Xin Pan 已提交
138
  RuntimeContext(const VariableNameMap& innames,
139 140
                 const VariableNameMap& outnames,
                 const Scope& scope);
X
Xin Pan 已提交
141

X
Xin Pan 已提交
142 143 144 145
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
146 147 148 149
  VariableValueMap inputs;
  VariableValueMap outputs;
};

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx);

  bool HasInput(const std::string& name) const override;

  bool HasOutput(const std::string& name) const override;

  bool HasAttr(const std::string& name) const override;

  bool HasInputs(const std::string& name) const override;

  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override;

  AttrReader Attrs() const override;

  std::vector<std::string> Inputs(const std::string& name) const override;

  std::vector<std::string> Outputs(const std::string& name) const override;

  std::string GetInputNameByIdx(size_t idx) const override;

  std::string GetOutputNameByIdx(size_t idx) const override;

  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
                size_t j = 0) override;

  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override;

  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
                size_t j = 0) const override;

  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override;

  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
                   size_t j = 0) const override;

  bool IsRuntime() const override;

  bool IsRunMKLDNNKernel() const override;

  // TODO(paddle-dev): Can this be template?
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override;

  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override;

  DDim GetInputDim(const std::string& name) const override;

  std::vector<DDim> GetInputsDim(const std::string& name) const override;

  proto::VarType::Type GetInputVarType(const std::string& name) const override;

  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override;

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override;

  void SetOutputDim(const std::string& name, const DDim& dim) override;

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override;

  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override;

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override;

  void SetSkipLoD(bool skip);

P
pangengzheng 已提交
228 229 230 231
  std::vector<LoD> GetOutputsLod(const std::string& out) const;

  std::vector<DDim> GetOutputsDim(const std::string& name) const;

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
 protected:
  DDim GetDim(Variable* var) const;

  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const;

  std::vector<DDim> GetRepeatedDims(const std::string& name) const override;

  void SetDim(Variable* var, const DDim& dim);

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims);

  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override;

  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const;

  proto::VarType::Type GetVarType(Variable* var) const;

 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const;

  const std::vector<Variable*>& OutputVars(const std::string& name) const;

  const OperatorBase& op_;
  const RuntimeContext& ctx_;
  bool can_skip_lod_{false};
};

Q
Qiao Longfei 已提交
262
/**
X
Xin Pan 已提交
263
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
264 265 266 267 268 269
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
270 271 272 273
  OperatorBase(const std::string& type,
               const VariableNameMap& inputs,
               const VariableNameMap& outputs,
               const AttributeMap& attrs);
274

Q
Qiao Longfei 已提交
275 276
  virtual ~OperatorBase() {}

277
  /// Executor will call this interface function to Run an op.
278 279
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
280

T
typhoonzero 已提交
281 282 283
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

284
  /// if scope is not null, also show dimensions of arguments
285
  virtual std::string DebugStringEx(const Scope* scope) const;
286
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
287

288
  virtual bool SupportGPU() const { return false; }
289
  virtual bool SupportXPU() const { return false; }
290

291 292
  const std::string& Type() const { return type_; }

293 294 295
  bool HasAttr(const std::string& name) const {
    return attrs_.count(name) || runtime_attrs_.count(name);
  }
296 297
  template <typename T>
  inline const T& Attr(const std::string& name) const {
298 299 300 301 302 303 304 305 306 307 308
    auto it = attrs_.find(name);
    if (it == attrs_.end()) {
      it = runtime_attrs_.find(name);
      PADDLE_ENFORCE_NE(
          it,
          runtime_attrs_.end(),
          platform::errors::NotFound(
              "(%s) is not found in AttributeMap and RuntimeAttributeMap.",
              name));
    }
    return PADDLE_GET_CONST(T, it->second);
309
  }
310 311
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
312 313
        HasAttr(name),
        true,
314 315 316 317 318
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
319
  const AttributeMap& Attrs() const { return attrs_; }
320 321 322 323
  const AttributeMap& RuntimeAttrs() const { return runtime_attrs_; }
  void SetRuntimeAttributeMap(const AttributeMap& runtime_attrs) {
    runtime_attrs_ = runtime_attrs;
  }
D
dongzhihong 已提交
324

Y
Yu Yang 已提交
325 326
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
327 328
  VariableNameMap& Inputs() { return inputs_; }
  VariableNameMap& Outputs() { return outputs_; }
329

S
sneaxiy 已提交
330
  const OpInfo& Info() const {
331
    PADDLE_ENFORCE_NOT_NULL(
332 333 334
        info_,
        platform::errors::NotFound("OpInfo of operator (%s) is not found.",
                                   type_));
S
sneaxiy 已提交
335 336 337
    return *info_;
  }

338
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
339
  //! Get a input with argument's name described in `op_proto`
340
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
341
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
342
  const std::vector<std::string>& Inputs(const std::string& name) const;
343
  //! Get all inputs variable names
Q
qijun 已提交
344 345
  std::vector<std::string> InputVars() const;

346
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
347
  //! Get a output with argument's name described in `op_proto`
348
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
349 350
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
351
  const std::vector<std::string>& Outputs(const std::string& name) const;
352
  //! Get all outputs variable names
Y
Yu Yang 已提交
353
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
354

355
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
356

357
  virtual void SetIsRuntimeInferShape(bool x UNUSED) {}
P
pangengzheng 已提交
358

359 360 361
  virtual void RuntimeInferShape(const Scope& scope UNUSED,
                                 const platform::Place& place UNUSED,
                                 const RuntimeContext& ctx UNUSED) const {}
362

Z
Zhang Ting 已提交
363 364 365 366 367
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

368 369 370 371
  uint64_t Id() const { return id_; }

  void SetId(uint64_t id) { id_ = id; }

Q
qiaolongfei 已提交
372
 protected:
Q
Qiao Longfei 已提交
373
  std::string type_;
D
dongzhihong 已提交
374
  // NOTE: in case of OpGrad, inputs_ contains:
375
  // I (Inputs)
D
dongzhihong 已提交
376 377
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
378
  VariableNameMap inputs_;
Y
Yu Yang 已提交
379

D
dongzhihong 已提交
380 381
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
382
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
383
  AttributeMap attrs_;
384 385 386 387 388 389
  // NOTE: runtime_attrs_ contains the attributes which used for dispatching
  // kernel (use_mkldnn, use_cudnn, ...) or passing additional configuration
  // for special heterogeneous kernel (workspace_size_MB, ...).
  // The attributes in runtime_attrs_ are setted by framework (such as PASS),
  // and not in the python api.
  AttributeMap runtime_attrs_;
S
sneaxiy 已提交
390 391 392 393

  // OpInfo
  const OpInfo* info_;

394 395 396
  // OpDesc Id
  uint64_t id_ = UINT64_MAX;

397 398
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
399 400 401 402

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
403 404
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
405 406
};

407
class ExecutionContext : public phi::KernelContext {
Y
Yan Chunwei 已提交
408
 public:
409 410
  ExecutionContext(const OperatorBase& op,
                   const Scope& scope,
X
Xin Pan 已提交
411
                   const platform::DeviceContext& device_context,
412 413
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
414
  virtual ~ExecutionContext() {}
415

H
hong 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
436 437 438

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
439
  template <typename T>
Y
Yu Yang 已提交
440
  inline const T& Attr(const std::string& name) const {
R
Ruibiao Chen 已提交
441
    return PADDLE_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
442 443
  }

H
hong 已提交
444
  virtual const Attribute& GetAttr(const std::string& name) const {
445 446
    auto iter = op_.Attrs().find(name);
    if (iter == op_.Attrs().end()) {
447 448 449 450 451 452 453 454
      iter = op_.RuntimeAttrs().find(name);
      PADDLE_ENFORCE_NE(
          iter,
          op_.RuntimeAttrs().end(),
          platform::errors::NotFound("(%s) is not found in AttributeMap and "
                                     "RuntimeAttributeMap of (%s) operator.",
                                     name,
                                     op_.Type()));
455
    }
456
    return iter->second;
H
hong 已提交
457
  }
458

H
hong 已提交
459
  virtual bool HasInput(const std::string& name) const;
460

461 462
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
463
  virtual bool HasOutput(const std::string& name) const;
464

H
hong 已提交
465
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
466
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
467 468
  }

H
hong 已提交
469
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
470
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
471 472
  }

H
hong 已提交
473
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
474

H
hong 已提交
475
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
476

H
hong 已提交
477
  virtual const std::vector<Variable*> MultiInputVar(
478
      const std::string& name) const {
479 480
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
481 482 483 484
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
485
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
486 487
  }

H
hong 已提交
488
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
489 490 491 492 493 494 495
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
496 497
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
498 499 500
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
501
      vec_temp.push_back(&input.first);
H
hong 已提交
502 503 504 505 506
    }

    return vec_temp;
  }

507 508
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
509
    auto* var = InputVar(name);
510
    return var == nullptr ? nullptr : &var->Get<T>();
511 512 513 514
  }

  template <typename T>
  T* Output(const std::string& name) const {
515
    auto var = OutputVar(name);
516
    return var == nullptr ? nullptr : var->GetMutable<T>();
517 518 519 520
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
521 522
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
523 524
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
525 526 527 528
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
529 530 531
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
H
hong 已提交
532
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
533 534 535 536 537 538 539
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
540 541 542
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
543 544
      return {};
    }
H
hong 已提交
545

X
Xin Pan 已提交
546 547
    std::vector<T*> res;
    res.reserve(vars.size());
548 549 550
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
X
Xin Pan 已提交
551 552 553
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
554

X
Xin Pan 已提交
555 556 557
    return res;
  }

558
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
559

Q
QI JUN 已提交
560 561 562 563 564
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

565
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
566
    return device_context_;
Q
qijun 已提交
567
  }
Q
qijun 已提交
568

569
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
570
  const inline phi::GPUContext& cuda_device_context() const {
571 572
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()),
                      true,
573 574
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
L
Leo Chen 已提交
575
    return *reinterpret_cast<const phi::GPUContext*>(&device_context_);
Q
QI JUN 已提交
576 577 578
  }
#endif

X
Xin Pan 已提交
579
  template <typename T, typename DevContext>
580 581
  phi::DenseTensor AllocateTmpTensor(const framework::DDim& dim,
                                     const DevContext& dev_ctx) const {
582 583 584 585
    phi::DenseTensor tmp;
    tmp.Resize(dim);
    dev_ctx.template Alloc<T>(&tmp);
    return tmp;
X
Xin Pan 已提交
586 587
  }

H
hong 已提交
588 589 590
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
591
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
592

593
 private:
594 595
  const OperatorBase& op_;
  const Scope& scope_;
596
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
597
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
598 599
};

600
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
601
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
602 603 604 605 606
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
607
    return ctx_.HasInputs(name);
608 609 610 611 612 613
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

614 615 616 617
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

618 619 620
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
621 622 623
  }

  size_t InputSize(const std::string& name) const override {
624
    return ctx_.MultiInputVar(name).size();
625 626 627
  }

  size_t OutputSize(const std::string& name) const override {
628
    return ctx_.MultiOutputVar(name).size();
629 630 631
  }

  bool IsDenseTensorInput(const std::string& name) const override {
632 633 634 635 636
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
637 638 639 640
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
641 642
  }

Y
YuanRisheng 已提交
643 644 645 646 647 648 649
  bool IsSelectedRowsInputs(const std::string& name) const override {
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
  }

650
  bool IsSelectedRowsInput(const std::string& name) const override {
651 652
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
653 654
  }

655
  bool IsDenseTensorVectorInput(const std::string& name) const override {
656 657 658 659
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
660 661
  }

662 663 664 665 666
  bool IsSparseCooTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCooTensor>();
  }

667 668 669 670 671 672 673
  bool IsSparseCooTensorOutput(const std::string& name) const override {
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SparseCooTensor>();
    });
  }

674 675 676 677 678
  bool IsSparseCsrTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCsrTensor>();
  }

679
  bool IsDenseTensorOutput(const std::string& name) const override {
680 681 682 683
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
684 685 686
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
687 688 689 690
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
691 692
  }

693 694
  bool IsForInferShape() const override { return false; }

695 696 697 698
 private:
  const ExecutionContext& ctx_;
};

699
template <>
700 701
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const;
702 703

template <>
704
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
705 706
    const std::string& name) const;

Y
Yu Yang 已提交
707
class OpKernelBase {
Q
qijun 已提交
708
 public:
Q
qijun 已提交
709
  /**
710
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
711 712
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
713
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
714 715
   */

716
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
717

Y
Yu Yang 已提交
718 719 720 721 722 723 724
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
725 726
};

Y
Yu Yang 已提交
727 728
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
729
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
730
  using OpKernelMap =
Y
yuyang18 已提交
731
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
732

733 734 735
  OperatorWithKernel(const std::string& type,
                     const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
736 737 738
                     const AttributeMap& attrs);

  virtual ~OperatorWithKernel();
Y
Yu Yang 已提交
739

C
chentianyu03 已提交
740
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
741
  AllOpKernels() {
C
chentianyu03 已提交
742
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
743
    return g_all_op_kernels;
Y
Yu Yang 已提交
744
  }
Y
Yan Chunwei 已提交
745

746 747
  bool SupportGPU() const override;

748 749
  bool SupportXPU() const override;

750
  bool SupportsMKLDNN(phi::DataType data_type) const;
751

752
  bool SupportsCUDNN(phi::DataType data_type) const;
753

754 755
  bool SupportsKernelType(const OpKernelType& kernel_type,
                          const ExecutionContext& exe_ctx) const;
756

757 758 759
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       phi::DataType data_type) const;

760 761
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
762

763 764 765
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      phi::DataType data_type) const;

766 767 768
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      proto::VarType::Type data_type) const;

769
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
770

P
pangengzheng 已提交
771 772 773 774
  void SetIsRuntimeInferShape(bool x) override {
    all_kernels_must_compute_runtime_shape_ = x;
  }

775 776
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place,
X
Xin Pan 已提交
777
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
778

779 780 781
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

782
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
783 784
      const ExecutionContext& ctx,
      const std::string& name1,
785 786
      const std::string& name2) const;

787 788
  virtual phi::KernelKey GetExpectedKernelType(
      const ExecutionContext& ctx) const;
X
Xin Pan 已提交
789

790 791
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
792
  virtual phi::KernelKey GetKernelTypeForVar(
793
      const std::string& var_name,
794
      const phi::DenseTensor& tensor,
795
      const phi::KernelKey& expected_kernel_type) const;
Y
Yu Yang 已提交
796

797
  platform::Place GetExecutionPlace(
798
      const platform::Place& platform UNUSED) const override {
Z
Zhang Ting 已提交
799 800 801
    return kernel_type_->place_;
  }

802
  /* member functions for adapting to phi lib */
803 804 805 806 807 808 809
  /** In the phi::DenseTensor calculation library, the new Kernel adopts a
   * clearer and more streamlined design. The arguments of the Kernel and the
   * input and output arguments registered in the original OpMaker do not match
   * in some cases, so we use map to record the arguments required by the
   * kernel. When selecting Kernel during Op execution, select the arguments of
   * the original Op according to the GetExpectedPhiKernelArgs returned
   * arguments.
810
   */
811
  phi::KernelSignature GetExpectedPhiKernelArgs(
812 813
      const ExecutionContext& ctx) const;

814 815
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
816

817
  void ChooseKernel(const ExecutionContext& ctx) const;
818

819 820
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
821
                             phi::KernelContext* phi_kernel_context) const;
822

823
  phi::KernelSignature* PhiKernelSignature() const {
824
    return kernel_signature_.get();
825 826
  }

827
  phi::Kernel* PhiKernel() const { return phi_kernel_.get(); }
828

829
  void ResetPhiKernel(phi::Kernel* kernel) const {
830
    return phi_kernel_.reset(kernel);
831 832
  }

833
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }
834
  const OpKernelFunc* kernel_func() const { return kernel_func_.get(); }
835

836 837 838 839
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

840 841 842 843
  bool DnnFallback() const { return dnn_fallback_; }

  void SetDnnFallback(bool dnn_fallback) const { dnn_fallback_ = dnn_fallback; }

Y
Yu Yang 已提交
844
 private:
845
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
846 847
  void RunImpl(const Scope& scope,
               const platform::Place& place,
L
luotao1 已提交
848
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
849 850

  /**
T
tianshuo78520a 已提交
851
   * Transfer data from scope to a transferred scope. If there is no data need
852
   * to be transferred, it returns nullptr.
Y
yuyang18 已提交
853
   *
854
   * transfered_inplace_vars is a output vector.
Y
yuyang18 已提交
855
   */
X
Xin Pan 已提交
856
  Scope* PrepareData(const Scope& scope,
857
                     const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
858
                     std::vector<std::string>* transfered_inplace_vars,
859 860
                     RuntimeContext* ctx,
                     const phi::Place& place) const;
Y
yuyang18 已提交
861

862 863 864 865
  void CheckWhetherPreparePhiData(const VariableNameMap& innames,
                                  const VariableNameMap& outnames,
                                  const Scope& scope) const;

Y
yuyang18 已提交
866 867 868
  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
869

870 871
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

872 873 874
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

875 876 877 878 879
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
880 881
  void ParseInputDataType(const Variable* vars,
                          const std::string& name,
882
                          proto::VarType::Type* data_type) const;
883 884 885
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
886
  // used for IndicateOrPromoteVarDataTypes
887 888
  phi::DenseTensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                             const std::string& name) const;
889

890
 protected:
L
Liu Yiqun 已提交
891 892
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
893
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
C
csy0225 已提交
894
  mutable const Scope* pre_scope_ = nullptr;
895
  mutable bool need_prepare_data_ = true;
896
  mutable bool need_prepare_phi_data_ = false;
897 898
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
899
  mutable std::mutex cache_update_mutex_;
900
  mutable bool enable_cache_transfer_scope_ = false;
901 902 903 904
  // NOTE(jiahongyu): Whether fallback to plain kernel after calling
  // GetExpectedKernelType, use this bool flag to solve mkldnn and cudnn hard
  // code
  mutable bool dnn_fallback_ = false;
905
  // NOTE(chenweihang): Similar op members are used to adapt to
906
  // new phi kernel, if there is a better design in the future,
907
  // we may polish the implementation here
908
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
909
  mutable bool run_kp_kernel = false;
910
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
911
  mutable std::unique_ptr<phi::Kernel> phi_kernel_;
912
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
913

914
 private:
915
  struct CacheImpl;
916
  mutable std::unique_ptr<CacheImpl> impl_;
Q
Qiao Longfei 已提交
917 918
};

Y
Yu Yang 已提交
919 920
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
921 922
}  // namespace framework
}  // namespace paddle