operator.h 27.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/platform/device_context.h"
41

42 43
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
44
#include "paddle/phi/core/kernel_context.h"
45
#include "paddle/phi/core/kernel_factory.h"
46
#include "paddle/utils/flat_hash_map.h"
47

W
wanghuancoder 已提交
48 49 50 51 52 53 54 55 56
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

57 58 59 60
namespace phi {
class KernelContext;
}

Q
Qiao Longfei 已提交
61 62
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
63 64 65
namespace paddle {
namespace framework {

66
/// If a variable is a empty variable, that name will be used.
67
constexpr char kEmptyVarName[] = "@EMPTY@";
68 69 70

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
71
constexpr char kTempVarName[] = "@TEMP@";
72 73

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
74 75
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
76
constexpr char kGradVarSuffix[] = "@GRAD";
77

M
minqiyang 已提交
78 79
constexpr size_t kGradVarSuffixSize = 5U;

80
/// Variables with this suffix are supposed to be filled up with zeros.
81
constexpr char kZeroVarSuffix[] = "@ZERO";
82

C
chengduo 已提交
83 84 85
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
86 87 88 89 90 91 92 93
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
94 95 96 97 98 99 100 101 102
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
103
// define some kernel priority
104
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
105 106
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

107
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
108 109 110 111 112
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
113 114
}

M
minqiyang 已提交
115
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
116
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
117 118 119 120 121
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
122 123
}

124
inline bool VarIsTensor(const Variable& var) {
125
  return var.IsType<phi::DenseTensor>() || var.IsType<phi::SelectedRows>();
126 127
}

128 129 130
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var);
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
131

132
class ExecutionContext;
W
wanghuancoder 已提交
133
class OperatorBase;
134

X
Xin Pan 已提交
135 136
class RuntimeContext {
 public:
X
Xin Pan 已提交
137
  RuntimeContext(const VariableNameMap& innames,
138 139
                 const VariableNameMap& outnames,
                 const Scope& scope);
X
Xin Pan 已提交
140

X
Xin Pan 已提交
141 142 143 144
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
145 146 147 148
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
149
/**
X
Xin Pan 已提交
150
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
151 152 153 154 155 156
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
157 158 159 160
  OperatorBase(const std::string& type,
               const VariableNameMap& inputs,
               const VariableNameMap& outputs,
               const AttributeMap& attrs);
161

Q
Qiao Longfei 已提交
162 163
  virtual ~OperatorBase() {}

164
  /// Executor will call this interface function to Run an op.
165 166
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
167

T
typhoonzero 已提交
168 169 170
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

171
  /// if scope is not null, also show dimensions of arguments
172
  virtual std::string DebugStringEx(const Scope* scope) const;
173
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
174

175
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
176
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
177
  virtual bool SupportMLU() const { return false; }
178
  virtual bool SupportXPU() const { return false; }
179

180 181
  const std::string& Type() const { return type_; }

182 183 184
  bool HasAttr(const std::string& name) const {
    return attrs_.count(name) || runtime_attrs_.count(name);
  }
185 186
  template <typename T>
  inline const T& Attr(const std::string& name) const {
187 188 189 190 191 192 193 194 195 196 197
    auto it = attrs_.find(name);
    if (it == attrs_.end()) {
      it = runtime_attrs_.find(name);
      PADDLE_ENFORCE_NE(
          it,
          runtime_attrs_.end(),
          platform::errors::NotFound(
              "(%s) is not found in AttributeMap and RuntimeAttributeMap.",
              name));
    }
    return PADDLE_GET_CONST(T, it->second);
198
  }
199 200
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
201 202
        HasAttr(name),
        true,
203 204 205 206 207
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
208
  const AttributeMap& Attrs() const { return attrs_; }
209 210 211 212
  const AttributeMap& RuntimeAttrs() const { return runtime_attrs_; }
  void SetRuntimeAttributeMap(const AttributeMap& runtime_attrs) {
    runtime_attrs_ = runtime_attrs;
  }
D
dongzhihong 已提交
213

Y
Yu Yang 已提交
214 215
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
216 217
  VariableNameMap& Inputs() { return inputs_; }
  VariableNameMap& Outputs() { return outputs_; }
218

S
sneaxiy 已提交
219
  const OpInfo& Info() const {
220
    PADDLE_ENFORCE_NOT_NULL(
221 222 223
        info_,
        platform::errors::NotFound("OpInfo of operator (%s) is not found.",
                                   type_));
S
sneaxiy 已提交
224 225 226
    return *info_;
  }

227
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
228
  //! Get a input with argument's name described in `op_proto`
229
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
230
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
231
  const std::vector<std::string>& Inputs(const std::string& name) const;
232
  //! Get all inputs variable names
Q
qijun 已提交
233 234
  std::vector<std::string> InputVars() const;

235
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
236
  //! Get a output with argument's name described in `op_proto`
237
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
238 239
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
240
  const std::vector<std::string>& Outputs(const std::string& name) const;
241
  //! Get all outputs variable names
Y
Yu Yang 已提交
242
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
243

244
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
245

B
baojun-nervana 已提交
246
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
247 248
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
249

Z
Zhang Ting 已提交
250 251 252 253 254
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

255 256 257 258
  uint64_t Id() const { return id_; }

  void SetId(uint64_t id) { id_ = id; }

Q
qiaolongfei 已提交
259
 protected:
Q
Qiao Longfei 已提交
260
  std::string type_;
D
dongzhihong 已提交
261
  // NOTE: in case of OpGrad, inputs_ contains:
262
  // I (Inputs)
D
dongzhihong 已提交
263 264
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
265
  VariableNameMap inputs_;
Y
Yu Yang 已提交
266

D
dongzhihong 已提交
267 268
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
269
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
270
  AttributeMap attrs_;
271 272 273 274 275 276
  // NOTE: runtime_attrs_ contains the attributes which used for dispatching
  // kernel (use_mkldnn, use_cudnn, ...) or passing additional configuration
  // for special heterogeneous kernel (workspace_size_MB, ...).
  // The attributes in runtime_attrs_ are setted by framework (such as PASS),
  // and not in the python api.
  AttributeMap runtime_attrs_;
S
sneaxiy 已提交
277 278 279 280

  // OpInfo
  const OpInfo* info_;

281 282 283
  // OpDesc Id
  uint64_t id_ = UINT64_MAX;

284 285
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
286 287 288 289

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
290 291
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
292 293
};

294
class ExecutionContext : public phi::KernelContext {
Y
Yan Chunwei 已提交
295
 public:
296 297
  ExecutionContext(const OperatorBase& op,
                   const Scope& scope,
X
Xin Pan 已提交
298
                   const platform::DeviceContext& device_context,
299 300
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
301
  virtual ~ExecutionContext() {}
302

H
hong 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
323 324 325

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
326
  template <typename T>
Y
Yu Yang 已提交
327
  inline const T& Attr(const std::string& name) const {
R
Ruibiao Chen 已提交
328
    return PADDLE_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
329 330
  }

H
hong 已提交
331
  virtual const Attribute& GetAttr(const std::string& name) const {
332 333
    auto iter = op_.Attrs().find(name);
    if (iter == op_.Attrs().end()) {
334 335 336 337 338 339 340 341
      iter = op_.RuntimeAttrs().find(name);
      PADDLE_ENFORCE_NE(
          iter,
          op_.RuntimeAttrs().end(),
          platform::errors::NotFound("(%s) is not found in AttributeMap and "
                                     "RuntimeAttributeMap of (%s) operator.",
                                     name,
                                     op_.Type()));
342
    }
343
    return iter->second;
H
hong 已提交
344
  }
345

H
hong 已提交
346
  virtual bool HasInput(const std::string& name) const;
347

348 349
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
350
  virtual bool HasOutput(const std::string& name) const;
351

H
hong 已提交
352
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
353
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
354 355
  }

H
hong 已提交
356
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
357
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
358 359
  }

H
hong 已提交
360
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
361

H
hong 已提交
362
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
363

H
hong 已提交
364
  virtual const std::vector<Variable*> MultiInputVar(
365
      const std::string& name) const {
366 367
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
368 369 370 371
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
372
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
373 374
  }

H
hong 已提交
375
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
376 377 378 379 380 381 382
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
383 384
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
385 386 387
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
388
      vec_temp.push_back(&input.first);
H
hong 已提交
389 390 391 392 393
    }

    return vec_temp;
  }

394 395
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
396
    auto* var = InputVar(name);
397
    return var == nullptr ? nullptr : &var->Get<T>();
398 399 400 401
  }

  template <typename T>
  T* Output(const std::string& name) const {
402
    auto var = OutputVar(name);
403
    return var == nullptr ? nullptr : var->GetMutable<T>();
404 405 406 407
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
408 409
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
410 411
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
412 413 414 415
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
416 417 418
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
H
hong 已提交
419
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
420 421 422 423 424 425 426
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
427 428 429
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
430 431
      return {};
    }
H
hong 已提交
432

X
Xin Pan 已提交
433 434
    std::vector<T*> res;
    res.reserve(vars.size());
435 436 437
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
X
Xin Pan 已提交
438 439 440
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
441

X
Xin Pan 已提交
442 443 444
    return res;
  }

445
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
446

Q
QI JUN 已提交
447 448 449 450 451
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

452
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
453
    return device_context_;
Q
qijun 已提交
454
  }
Q
qijun 已提交
455

456
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
457
  const inline phi::GPUContext& cuda_device_context() const {
458 459
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()),
                      true,
460 461
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
L
Leo Chen 已提交
462
    return *reinterpret_cast<const phi::GPUContext*>(&device_context_);
Q
QI JUN 已提交
463 464 465
  }
#endif

X
Xin Pan 已提交
466
  template <typename T, typename DevContext>
467 468
  phi::DenseTensor AllocateTmpTensor(const framework::DDim& dim,
                                     const DevContext& dev_ctx) const {
469 470 471 472
    phi::DenseTensor tmp;
    tmp.Resize(dim);
    dev_ctx.template Alloc<T>(&tmp);
    return tmp;
X
Xin Pan 已提交
473 474
  }

H
hong 已提交
475 476 477
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
478
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
479

480
 private:
481 482
  const OperatorBase& op_;
  const Scope& scope_;
483
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
484
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
485 486
};

487
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
488
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
489 490 491 492 493
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
494
    return ctx_.HasInputs(name);
495 496 497 498 499 500
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

501 502 503 504
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

505 506 507
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
508 509 510
  }

  size_t InputSize(const std::string& name) const override {
511
    return ctx_.MultiInputVar(name).size();
512 513 514
  }

  size_t OutputSize(const std::string& name) const override {
515
    return ctx_.MultiOutputVar(name).size();
516 517 518
  }

  bool IsDenseTensorInput(const std::string& name) const override {
519 520 521 522 523
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
524 525 526 527
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
528 529
  }

Y
YuanRisheng 已提交
530 531 532 533 534 535 536
  bool IsSelectedRowsInputs(const std::string& name) const override {
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
  }

537
  bool IsSelectedRowsInput(const std::string& name) const override {
538 539
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
540 541
  }

542
  bool IsDenseTensorVectorInput(const std::string& name) const override {
543 544 545 546
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
547 548
  }

549 550 551 552 553
  bool IsSparseCooTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCooTensor>();
  }

554 555 556 557 558 559 560
  bool IsSparseCooTensorOutput(const std::string& name) const override {
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SparseCooTensor>();
    });
  }

561 562 563 564 565
  bool IsSparseCsrTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCsrTensor>();
  }

566
  bool IsDenseTensorOutput(const std::string& name) const override {
567 568 569 570
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
571 572 573
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
574 575 576 577
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
578 579
  }

580 581
  bool IsForInferShape() const override { return false; }

582 583 584 585
 private:
  const ExecutionContext& ctx_;
};

586
template <>
587 588
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const;
589 590

template <>
591
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
592 593
    const std::string& name) const;

Y
Yu Yang 已提交
594
class OpKernelBase {
Q
qijun 已提交
595
 public:
Q
qijun 已提交
596
  /**
597
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
598 599
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
600
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
601 602
   */

603
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
604

Y
Yu Yang 已提交
605 606 607 608 609 610 611
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
612 613
};

Y
Yu Yang 已提交
614 615
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
616
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
617
  using OpKernelMap =
Y
yuyang18 已提交
618
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
619

620 621 622
  OperatorWithKernel(const std::string& type,
                     const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
623 624 625
                     const AttributeMap& attrs);

  virtual ~OperatorWithKernel();
Y
Yu Yang 已提交
626

C
chentianyu03 已提交
627
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
628
  AllOpKernels() {
C
chentianyu03 已提交
629
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
630
    return g_all_op_kernels;
Y
Yu Yang 已提交
631
  }
Y
Yan Chunwei 已提交
632

633 634 635
  bool SupportGPU() const override;

  bool SupportNPU() const override;
636

F
fwenguang 已提交
637
  bool SupportMLU() const override {
638
    // TODO(zhiqiu): support phi if needed?
F
fwenguang 已提交
639
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
640 641
    return std::any_of(op_kernels.begin(),
                       op_kernels.end(),
F
fwenguang 已提交
642 643 644 645
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
646 647 648

  bool SupportXPU() const override;

649
  bool SupportsMKLDNN(phi::DataType data_type) const;
650

651
  bool SupportsCUDNN(phi::DataType data_type) const;
652

653 654
  bool SupportsKernelType(const OpKernelType& kernel_type,
                          const ExecutionContext& exe_ctx) const;
655

656 657 658
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       phi::DataType data_type) const;

659 660
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
661

662 663 664
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      phi::DataType data_type) const;

665 666 667
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      proto::VarType::Type data_type) const;

668
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
669

670 671
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place,
X
Xin Pan 已提交
672
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
673

674 675 676
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

677
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
678 679
      const ExecutionContext& ctx,
      const std::string& name1,
680 681
      const std::string& name2) const;

682 683
  virtual phi::KernelKey GetExpectedKernelType(
      const ExecutionContext& ctx) const;
X
Xin Pan 已提交
684

685 686
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
687
  virtual phi::KernelKey GetKernelTypeForVar(
688
      const std::string& var_name,
689
      const phi::DenseTensor& tensor,
690
      const phi::KernelKey& expected_kernel_type) const;
Y
Yu Yang 已提交
691

692 693
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
694 695 696
    return kernel_type_->place_;
  }

697
  /* member functions for adapting to phi lib */
698 699 700 701 702 703 704
  /** In the phi::DenseTensor calculation library, the new Kernel adopts a
   * clearer and more streamlined design. The arguments of the Kernel and the
   * input and output arguments registered in the original OpMaker do not match
   * in some cases, so we use map to record the arguments required by the
   * kernel. When selecting Kernel during Op execution, select the arguments of
   * the original Op according to the GetExpectedPhiKernelArgs returned
   * arguments.
705
   */
706
  phi::KernelSignature GetExpectedPhiKernelArgs(
707 708
      const ExecutionContext& ctx) const;

709 710
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
711

712
  void ChooseKernel(const ExecutionContext& ctx) const;
713

714 715
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
716
                             phi::KernelContext* phi_kernel_context) const;
717

718
  phi::KernelSignature* PhiKernelSignature() const {
719
    return kernel_signature_.get();
720 721
  }

722
  phi::Kernel* PhiKernel() const { return phi_kernel_.get(); }
723

724
  void ResetPhiKernel(phi::Kernel* kernel) const {
725
    return phi_kernel_.reset(kernel);
726 727
  }

728
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }
729
  const OpKernelFunc* kernel_func() const { return kernel_func_.get(); }
730

731 732 733 734
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

735 736 737 738
  bool DnnFallback() const { return dnn_fallback_; }

  void SetDnnFallback(bool dnn_fallback) const { dnn_fallback_ = dnn_fallback; }

Y
Yu Yang 已提交
739
 private:
740
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
741 742
  void RunImpl(const Scope& scope,
               const platform::Place& place,
L
luotao1 已提交
743
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
744 745

  /**
T
tianshuo78520a 已提交
746
   * Transfer data from scope to a transferred scope. If there is no data need
747
   * to be transferred, it returns nullptr.
Y
yuyang18 已提交
748
   *
749
   * transfered_inplace_vars is a output vector.
Y
yuyang18 已提交
750
   */
X
Xin Pan 已提交
751
  Scope* PrepareData(const Scope& scope,
752
                     const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
753
                     std::vector<std::string>* transfered_inplace_vars,
754 755
                     RuntimeContext* ctx,
                     const phi::Place& place) const;
Y
yuyang18 已提交
756

757 758 759 760
  void CheckWhetherPreparePhiData(const VariableNameMap& innames,
                                  const VariableNameMap& outnames,
                                  const Scope& scope) const;

Y
yuyang18 已提交
761 762 763
  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
764

765 766
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

767 768 769
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

770 771 772 773 774
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
775 776
  void ParseInputDataType(const Variable* vars,
                          const std::string& name,
777
                          proto::VarType::Type* data_type) const;
778 779 780
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
781
  // used for IndicateOrPromoteVarDataTypes
782 783
  phi::DenseTensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                             const std::string& name) const;
784

785
 protected:
L
Liu Yiqun 已提交
786 787
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
788
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
C
csy0225 已提交
789
  mutable const Scope* pre_scope_ = nullptr;
790
  mutable bool need_prepare_data_ = true;
791
  mutable bool need_prepare_phi_data_ = false;
792 793
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
794
  mutable std::mutex cache_update_mutex_;
795
  mutable bool enable_cache_transfer_scope_ = false;
796 797 798 799
  // NOTE(jiahongyu): Whether fallback to plain kernel after calling
  // GetExpectedKernelType, use this bool flag to solve mkldnn and cudnn hard
  // code
  mutable bool dnn_fallback_ = false;
800
  // NOTE(chenweihang): Similar op members are used to adapt to
801
  // new phi kernel, if there is a better design in the future,
802
  // we may polish the implementation here
803
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
804
  mutable bool run_kp_kernel = false;
805
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
806
  mutable std::unique_ptr<phi::Kernel> phi_kernel_;
807
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
808

809
 private:
810
  struct CacheImpl;
811
  mutable std::unique_ptr<CacheImpl> impl_;
Q
Qiao Longfei 已提交
812 813
};

Y
Yu Yang 已提交
814 815
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
816 817
}  // namespace framework
}  // namespace paddle