softmax_gpudnn.h 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/backends/gpu/gpu_info.h"
18 19
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/bfloat16.h"
20 21 22 23 24 25
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"

// See Note [ Why still include the fluid headers? ]
26 27
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
28

29
namespace phi {
30

31 32
using ScopedTensorDescriptor = paddle::platform::ScopedTensorDescriptor;
using GPUDNNDataLayout = paddle::platform::DataLayout;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

// Vectorization trait 4 * sizeof(T)
template <typename T>
class VecT4 {};
template <>
class VecT4<double> {
 public:
  using Type = long4;
};
template <>
class VecT4<float> {
 public:
  using Type = int4;
};
template <>
48
class VecT4<phi::dtype::float16> {
49 50 51
 public:
  using Type = int2;
};
52 53 54 55 56
template <>
class VecT4<phi::dtype::bfloat16> {
 public:
  using Type = int2;
};
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

// Vectorization trait 2 * sizeof(T)
template <typename T>
class VecT2 {};
template <>
class VecT2<double> {
 public:
  using Type = int4;
};
template <>
class VecT2<float> {
 public:
  using Type = int2;
};
template <>
72
class VecT2<phi::dtype::float16> {
73 74 75
 public:
  using Type = int;
};
76 77 78 79 80
template <>
class VecT2<phi::dtype::bfloat16> {
 public:
  using Type = int;
};
81

82
static inline int Log2Ceil(int value) {
83 84 85 86 87 88 89 90 91 92 93
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
94 95
      T sum_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
96 97 98 99 100 101 102 103 104 105 106
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
107 108
      T max_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
109 110 111 112 113
      sum[i] = max(sum[i], max_val);
    }
  }
}

114 115 116 117 118 119 120 121 122 123
template <typename Tx, typename Ty = Tx>
struct ReduceMaxFunctor {
  inline Ty initial() { return -std::numeric_limits<Ty>::infinity(); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return max(a, b);
  }
};

template <typename Tx, typename Ty = Tx>
124
struct ExpFunctor {
125
  HOSTDEVICE inline Ty operator()(const Tx& x) const {
126
    return static_cast<Ty>(std::exp(x));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  }
};

template <typename Tx, typename Ty = Tx>
struct ExpMulFunctor {
  HOSTDEVICE inline ExpMulFunctor() { y = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x) * y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnarySubFunctor {
  HOSTDEVICE inline UnarySubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnaryLogFunctor {
  HOSTDEVICE inline UnaryLogFunctor() {}

  HOSTDEVICE explicit inline UnaryLogFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::log(x));
  }
};

template <typename Tx, typename Ty>
struct DataTransFunctor {
  HOSTDEVICE inline DataTransFunctor() {}

  HOSTDEVICE explicit inline DataTransFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return x == -std::numeric_limits<Tx>::infinity()
               ? -std::numeric_limits<Ty>::infinity()
               : static_cast<Ty>(x);
  }
};

template <typename Tx, typename Ty = Tx>
struct UnaryDivFunctor {
  HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x * n_inv);
  }

 private:
  Tx n_inv;
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
template <typename Tx, typename Ty = Tx>
struct SoftmaxForwardFunctor {
  HOSTDEVICE inline SoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - max) / sum);
  }

 private:
  Tx max;
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct SoftmaxBackwardFunctor {
  HOSTDEVICE inline SoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(out * (grad_out - sum));
  }

 private:
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxForwardFunctor {
  HOSTDEVICE inline LogSoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), log_sum(std::log(sum)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - max - log_sum);
  }

 private:
  Tx max;
  Tx log_sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxBackwardFunctor {
  HOSTDEVICE inline LogSoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(grad_out - std::exp(out) * sum);
  }

 private:
  Tx sum;
};

248 249 250 251 252 253 254 255 256 257
/*
Core function of computing softmax forward for axis=-1.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: (a_{i,j} - maxvalue_{i}) / s_{i}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
258 259 260
template <typename T,
          typename VecT,
          typename AccT,
261
          typename IndexType,
262
          int Log2Elements,
263
          bool LogMode = false>
264 265
__global__ void WarpSoftmaxForward(T* softmax,
                                   const T* src,
266 267 268 269 270 271 272 273 274 275 276 277 278 279
                                   const IndexType batch_size,
                                   const IndexType stride,
                                   const IndexType element_count) {
  constexpr IndexType kDimCeil = 1 << Log2Elements;
  constexpr IndexType kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr IndexType kVSize = sizeof(VecT) / sizeof(T);
  constexpr IndexType kLoops = kDimCeil / kWarpSize;
  constexpr IndexType kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
  constexpr IndexType kBatchSize = (kDimCeil <= 32) ? 2 : 1;
  IndexType first_batch =
      (static_cast<IndexType>(blockDim.y) * blockIdx.x + threadIdx.y) *
      kBatchSize;
  constexpr IndexType kStep = kBatchSize * kLoopsV * kVSize;
  constexpr IndexType kVItem = kLoopsV * kVSize;
280 281
  constexpr AccT kLowInf = -std::numeric_limits<AccT>::infinity();
  using kMode = kps::details::ReduceMode;
282 283

  // max index to read
284
  IndexType idx_max_v[kBatchSize];
285
#pragma unroll
286 287
  for (IndexType i = 0; i < kBatchSize; i++) {
    IndexType idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
288 289 290
    idx_max_v[i] = idx_max / kVSize;
  }

F
Feng Xing 已提交
291
  // data src
292 293 294 295 296 297 298 299
  // src_data: the raw data form global memory
  // sub_data: store the data obtained by (src_data - max), used by log_softmax
  // exp_data: store the data obtained by (exp(sub_data)), used by softmax
  T src_data[kBatchSize][kLoopsV][kVSize];
  AccT sub_data[kBatchSize][kLoopsV][kVSize];
  AccT exp_data[kBatchSize][kLoopsV][kVSize];
  kps::Init<AccT, kStep>(&sub_data[0][0][0], kLowInf);
  kps::Init<T, kStep>(&src_data[0][0][0], -std::numeric_limits<T>::infinity());
F
Feng Xing 已提交
300 301 302 303 304 305 306 307 308 309 310 311

  // data dst
  T out_tmp[kBatchSize][kLoopsV][kVSize];

  // max value
  AccT max[kBatchSize];
  kps::Init<AccT, kBatchSize>(&max[0], kLowInf);

  // sum value
  AccT sum[kBatchSize] = {0};

// read data from global memory
312
#pragma unroll
313
  for (IndexType i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
314 315
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
316
    VecT* reg_v = reinterpret_cast<VecT*>(&src_data[i][0][0]);
317
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
318
        &reg_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1);
319
    kps::ElementwiseUnary<T, AccT, kVItem, 1, DataTransFunctor<T, AccT>>(
320
        &sub_data[i][0][0], &src_data[i][0][0], DataTransFunctor<T, AccT>());
321 322
  }

323
  // compute max
324 325 326 327 328
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              ReduceMaxFunctor<AccT>,
              kMode::kLocalMode>(
329
      &max[0], &sub_data[0][0][0], ReduceMaxFunctor<AccT>(), true);
330
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max);
331

332 333
// compute sum
#pragma unroll
334
  for (IndexType i = 0; i < kBatchSize; ++i) {
335
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, UnarySubFunctor<AccT>>(
336
        &sub_data[i][0][0], &sub_data[i][0][0], UnarySubFunctor<AccT>(max[i]));
337
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, ExpFunctor<AccT>>(
338
        &exp_data[i][0][0], &sub_data[i][0][0], ExpFunctor<AccT>());
339
  }
340 341 342 343 344
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              kps::AddFunctor<AccT>,
              kMode::kLocalMode>(
345
      &sum[0], &exp_data[0][0][0], kps::AddFunctor<AccT>(), true);
346 347
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

F
Feng Xing 已提交
348
// write data to global memory
349
#pragma unroll
350
  for (IndexType i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
351 352 353
    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
354
    if (LogMode) {
355
      kps::ElementwiseUnary<AccT, T, kVItem, 1, UnarySubFunctor<AccT>>(
356
          &out_tmp[i][0][0],
357
          &sub_data[i][0][0],
358 359
          UnarySubFunctor<AccT>(std::log(sum[i])));
    } else {
360
      kps::ElementwiseUnary<AccT, T, kVItem, 1, UnaryDivFunctor<AccT>>(
361
          &out_tmp[i][0][0], &exp_data[i][0][0], UnaryDivFunctor<AccT>(sum[i]));
362
    }
363
    kps::WriteData<VecT, VecT, kLoopsV, 1, true>(
364
        &softmax_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
365 366 367 368 369 370 371 372 373 374 375 376
  }
}

/*
Core function of computing softmax backward for axis=-1.
The computation includes
  - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j}
  - Compute src_{i,j} * ( grad_{i,j}) - s_{i} )
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
377 378 379 380
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
381
          bool LogMode = false>
382 383 384 385 386
__global__ void WarpSoftmaxBackward(T* dst,
                                    const T* grad,
                                    const T* src,
                                    int batch_size,
                                    int stride,
387 388 389 390
                                    int element_count) {
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
391
  constexpr int kLoops = kDimCeil / kWarpSize;
392
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;
393
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
394 395
  int element_count_v = element_count / kVSize;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
396 397 398 399 400 401 402 403
  int local_batches = min(batch_size - first_batch, kBatchSize);

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
404 405 406
  }

  // read data from global memory
407 408 409 410 411 412 413 414
  VecT src_reg[kBatchSize][kLoopsV];
  VecT grad_reg[kBatchSize][kLoopsV];
  VecT k_value;
  for (int s = 0; s < kVSize; s++) {
    reinterpret_cast<T*>(&k_value)[s] = 0.0;
  }
  kps::Init<VecT, kBatchSize * kLoopsV>(&src_reg[0][0], k_value);
  kps::Init<VecT, kBatchSize * kLoopsV>(&grad_reg[0][0], k_value);
415
#pragma unroll
416 417 418 419 420
  for (int i = 0; i < kBatchSize; ++i) {
    int flag = i < local_batches ? 1 : 0;
    int ptr = (first_batch + i) * stride;
    const VecT* src_v = reinterpret_cast<const VecT*>(&src[ptr]);
    const VecT* grad_v = reinterpret_cast<const VecT*>(&grad[ptr]);
421
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
422
        &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag);
423
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
424
        &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag);
425 426
  }

427 428 429 430 431 432 433
  // change T to AccT
  AccT src_tmp[kBatchSize][kLoopsV][kVSize];
  AccT grad_tmp[kBatchSize][kLoopsV][kVSize];
  const T* src_ptr = reinterpret_cast<const T*>(&src_reg[0][0]);
  const T* grad_ptr = reinterpret_cast<const T*>(&grad_reg[0][0]);
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
434
  kps::ElementwiseUnary<T, AccT, kStep, 1, DataTransFunctor<T, AccT>>(
435
      &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor<T, AccT>());
436
  kps::ElementwiseUnary<T, AccT, kStep, 1, DataTransFunctor<T, AccT>>(
437 438
      &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor<T, AccT>());

439 440
  // compute sum
  AccT sum[kBatchSize]{0.0};
441 442 443
  AccT sum_tmp[kBatchSize][kLoopsV][kVSize];
  AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[0][0][0]);
  AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[0][0][0]);
444 445 446 447 448 449 450 451
  if (LogMode) {
    kps::Reduce<AccT,
                kVItem,
                kBatchSize,
                kps::AddFunctor<AccT>,
                kps::details::ReduceMode::kLocalMode>(
        &sum[0], &grad_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
  } else {
452
    kps::ElementwiseBinary<AccT, AccT, kStep, 1, kps::MulFunctor<AccT>>(
453 454 455 456 457 458 459 460
        &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor<AccT>());
    kps::Reduce<AccT,
                kVItem,
                kBatchSize,
                kps::AddFunctor<AccT>,
                kps::details::ReduceMode::kLocalMode>(
        &sum[0], &sum_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
  }
461 462
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

463 464 465
  // write result to global memory
  AccT out[kBatchSize][kLoopsV][kVSize];
  T out_tmp[kBatchSize][kLoopsV][kVSize];
466 467 468
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;
469 470
    AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[i][0][0]);
    AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[i][0][0]);
471
    if (LogMode) {
472
      kps::ElementwiseUnary<AccT, AccT, kVItem, 1, ExpMulFunctor<AccT>>(
473
          &out[i][0][0], &srcptr[0], ExpMulFunctor<AccT>(sum[i]));
474
      kps::ElementwiseBinary<AccT, T, kVItem, 1, kps::SubFunctor<AccT>>(
475 476 477 478 479
          &out_tmp[i][0][0],
          &gradptr[0],
          &out[i][0][0],
          kps::SubFunctor<AccT>());
    } else {
480
      kps::ElementwiseUnary<AccT, AccT, kVItem, 1, UnarySubFunctor<AccT>>(
481
          &out[i][0][0], &gradptr[0], UnarySubFunctor<AccT>(sum[i]));
482
      kps::ElementwiseBinary<AccT, T, kVItem, 1, kps::MulFunctor<AccT>>(
483 484 485 486 487
          &out_tmp[i][0][0],
          &srcptr[0],
          &out[i][0][0],
          kps::MulFunctor<AccT>());
    }
488
    VecT* dst_v = reinterpret_cast<VecT*>(&dst[(first_batch + i) * stride]);
489
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
490
    kps::WriteData<VecT, VecT, kLoopsV, 1, true>(
491
        &dst_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
492 493 494
  }
}

495 496 497 498 499
#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT)                   \
  case Log2Elements:                                                    \
    WarpSoftmaxForward<T, VecT, AccT, IndexType, Log2Elements, LogMode> \
        <<<blocks, threads, 0, dev_ctx.stream()>>>(                     \
            dst, src, batch_size, stride, element_count);               \
500 501 502 503 504
    break;

/*
  Wrapper of softmax formward with template instantiation on size of input.
*/
505 506
template <typename T, typename VecT, typename IndexType, bool LogMode>
void SwitchWarpSoftmaxForward(const IndexType blocks,
507 508 509 510
                              const dim3 threads,
                              const GPUContext& dev_ctx,
                              T* dst,
                              const T* src,
511 512 513 514
                              const IndexType batch_size,
                              const IndexType stride,
                              const IndexType element_count,
                              IndexType Log2Elements) {
515
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, AccT);
    default:
      break;
  }
}

532 533 534 535 536
#define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT)          \
  case Log2Elements:                                            \
    WarpSoftmaxBackward<T, VecT, AccT, Log2Elements, LogMode>   \
        <<<blocks, threads, 0, dev_ctx.stream()>>>(             \
            dst, grad, src, batch_size, stride, element_count); \
537 538 539 540 541 542
    break;

/*
Wrapper of softmax backward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
543 544 545 546 547 548 549 550 551 552 553
void SwitchWarpSoftmaxBackward(const int blocks,
                               const dim3 threads,
                               const GPUContext& dev_ctx,
                               T* dst,
                               const T* grad,
                               const T* src,
                               const int batch_size,
                               const int stride,
                               const int element_count,
                               int Log2Elements) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
  switch (Log2Elements) {
    SOFTMAX_WARP_BACKWARD_CASE(0, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(1, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(2, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(3, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(4, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(5, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(6, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(7, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(8, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(9, AccT);
    default:
      break;
  }
}

#undef SOFTMAX_WARP_FORWARD_CASE
#undef SOFTMAX_WARP_BACKWARD_CASE

573 574 575 576 577
/**
 * <NormalSoftmaxKernel>
 * Better performence when axis != -1
 */

578 579 580 581
static void GetGridDim(
    int high_dim, int mid_dim, int low_dim, const dim3& block, dim3* grid) {
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  int max_mp = phi::backends::gpu::GetGPUMultiProcessors(device_id);
582
  int max_threads_per_mp =
583
      phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(device_id);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  int max_threads = max_threads_per_mp * max_mp;
  int num_threads = block.x * block.y;
  int max_num_blocks = max_threads / num_threads;

  int grid_x = (low_dim + block.x - 1) / block.x;
  grid_x = std::min(grid_x, max_num_blocks);
  int grid_y = (max_num_blocks + grid_x - 1) / grid_x;
  grid_y = std::min(grid_y, high_dim);
  grid->x = grid_x;
  grid->y = grid_y;
}

static void GetBlockDim(int mid_dim, int low_dim, dim3* block) {
#ifdef __HIPCC__
  constexpr int max_num_threads = 256;
#else
  constexpr int max_num_threads = 1024;
#endif
602 603
  int block_x = 1 << Log2Ceil(low_dim);
  int block_y = 1 << Log2Ceil(mid_dim);
604 605 606 607 608
  block->x = std::min(block_x, 32);
  block->y = std::min(block_y, static_cast<int>(max_num_threads / block->x));
  block->x = std::min(block_x, static_cast<int>(max_num_threads / block->y));
}

609 610
static void GetLaunchConfig(
    int high_dim, int mid_dim, int low_dim, dim3* grid, dim3* block) {
611 612 613 614
  GetBlockDim(mid_dim, low_dim, block);
  GetGridDim(high_dim, mid_dim, low_dim, *block, grid);
}

615 616
template <typename T,
          typename AccT,
617 618
          template <typename, typename>
          class Functor>
619 620
__global__ void NormalSoftmaxForward(
    T* output, const T* input, int high_dim, int mid_dim, int low_dim) {
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int input_offset = high_id * high_stride + low_id;

      // 1. reduce max
      AccT max_value = -std::numeric_limits<AccT>::infinity();
      AccT value = -std::numeric_limits<AccT>::infinity();
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        max_value = kps::MaxFunctor<AccT>()(max_value, value);
      }

      if (blockDim.y > 1) {
638
        kps::Reduce<AccT, 1, 1, kps::MaxFunctor<AccT>, kMode::kGlobalMode>(
639 640 641 642 643 644 645 646 647 648
            &max_value, &max_value, kps::MaxFunctor<AccT>(), false);
      }

      // 2. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        sum += std::exp(value - max_value);
      }
      if (blockDim.y > 1) {
649
        kps::Reduce<AccT, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
650 651 652 653 654 655 656 657 658 659 660 661 662
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 3. (log)softmax
      Functor<AccT, T> functor(max_value, sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = input_offset + mid_id * mid_stride;
        output[data_offset] = functor(static_cast<AccT>(input[data_offset]));
      }
    }
  }
}

663 664
template <typename T,
          typename AccT,
665 666
          template <typename, typename>
          class Functor,
667
          bool LogMode>
668 669 670 671 672 673
__global__ void NormalSoftmaxBackward(T* input_grad,
                                      const T* output_grad,
                                      const T* output,
                                      int high_dim,
                                      int mid_dim,
                                      int low_dim) {
674 675 676 677 678 679 680 681 682 683
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int grad_offset = high_id * high_stride + low_id;

      // 1. reduce sum
      AccT sum = 0;
684 685 686 687 688 689 690 691 692 693 694
      if (LogMode) {
        for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
          int data_offset = grad_offset + mid_id * mid_stride;
          sum += static_cast<AccT>(output_grad[data_offset]);
        }
      } else {
        for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
          int data_offset = grad_offset + mid_id * mid_stride;
          sum += static_cast<AccT>(output_grad[data_offset]) *
                 static_cast<AccT>(output[data_offset]);
        }
695 696
      }
      if (blockDim.y > 1) {
697
        kps::Reduce<AccT, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 2. (log)softmax backward
      Functor<AccT, T> functor(sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        input_grad[data_offset] =
            functor(static_cast<AccT>(output_grad[data_offset]),
                    static_cast<AccT>(output[data_offset]));
      }
    }
  }
}

713
template <typename T, bool LogMode = false>
714 715 716 717 718 719 720
void LaunchNormalSoftmaxForward(const GPUContext& dev_ctx,
                                T* output_data,
                                const T* input_data,
                                int high_dim,
                                int mid_dim,
                                int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
721 722 723
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
724 725 726
    NormalSoftmaxForward<T, AccT, LogSoftmaxForwardFunctor>
        <<<grid, block, 0, dev_ctx.stream()>>>(
            output_data, input_data, high_dim, mid_dim, low_dim);
727
  } else {
728 729 730
    NormalSoftmaxForward<T, AccT, SoftmaxForwardFunctor>
        <<<grid, block, 0, dev_ctx.stream()>>>(
            output_data, input_data, high_dim, mid_dim, low_dim);
731 732 733
  }
}

734
template <typename T, bool LogMode = false>
735 736 737 738 739 740 741 742
void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx,
                                 T* input_grad_data,
                                 const T* output_grad_data,
                                 const T* output_data,
                                 int high_dim,
                                 int mid_dim,
                                 int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
743 744 745
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
746 747 748 749 750 751 752
    NormalSoftmaxBackward<T, AccT, LogSoftmaxBackwardFunctor, LogMode>
        <<<grid, block, 0, dev_ctx.stream()>>>(input_grad_data,
                                               output_grad_data,
                                               output_data,
                                               high_dim,
                                               mid_dim,
                                               low_dim);
753
  } else {
754 755 756 757 758 759 760
    NormalSoftmaxBackward<T, AccT, SoftmaxBackwardFunctor, LogMode>
        <<<grid, block, 0, dev_ctx.stream()>>>(input_grad_data,
                                               output_grad_data,
                                               output_data,
                                               high_dim,
                                               mid_dim,
                                               low_dim);
761 762 763
  }
}

764 765 766 767 768 769
template <typename T = int>
static std::vector<T> GetSoftmaxTensorDims(const phi::DDim& dims,
                                           const int axis) {
  auto dim = static_cast<T>(dims[axis]);
  auto N = phi::funcs::SizeToAxis<T>(axis, dims);
  auto D = phi::funcs::SizeOutAxis<T>(axis, dims);
770 771 772 773 774
  return {N, dim, D, 1};
}

template <typename T>
void SoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
775
                               const T* x_data,
776
                               const int axis,
777
                               const int rank,
778
                               const bool log_mode,
779 780
                               const std::vector<int>& tensor_dims,
                               T* out_data) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794
  auto handle = dev_ctx.cudnn_handle();
  GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;

  ScopedTensorDescriptor scoped_desc;
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t desc =
      scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                               : MIOPEN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenSoftmaxForward_V2(
      handle,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
795
      x_data,
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      out_data,
      algo,
      mode));
#else
  cudnnTensorDescriptor_t desc = scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                               : CUDNN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
      handle,
      algo,
      mode,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
812
      x_data,
813 814 815 816 817 818
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      out_data));
#endif
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
template <typename T>
void LaunchSoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
                                     const DenseTensor& x,
                                     const int axis,
                                     const bool log_mode,
                                     DenseTensor* out) {
  auto* out_data = out->data<T>();
  auto* x_data = x.data<T>();
  const int rank = x.dims().size();

  std::vector<int> tensor_dims = GetSoftmaxTensorDims(x.dims(), axis);
  int64_t remaining = tensor_dims[0];
  int dim = tensor_dims[1];
  int64_t batch_size = std::numeric_limits<int32_t>::max() / dim;
  int offset = batch_size * dim;
  while (remaining > 0) {
    tensor_dims[0] = std::min<int64_t>(remaining, batch_size);
    SoftmaxForwardCudnnKernel<T>(
        dev_ctx, x_data, axis, rank, log_mode, tensor_dims, out_data);
    x_data += offset;
    out_data += offset;
    remaining -= batch_size;
  }
}

844 845
template <typename T>
void SoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
846 847
                                const T* out_data,
                                const T* dout_data,
848
                                const int axis,
849
                                const int rank,
850
                                const bool log_mode,
851 852
                                const std::vector<int>& tensor_dims,
                                T* dx_data) {
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
  auto handle = dev_ctx.cudnn_handle();
  GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;

  ScopedTensorDescriptor scoped_desc;
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t desc =
      scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                               : MIOPEN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::miopenSoftmaxBackward_V2(
          handle,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc,
868
          out_data,
869
          desc,
870
          dout_data,
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
          paddle::platform::CudnnDataType<T>::kZero(),
          desc,
          dx_data,
          algo,
          mode));
#else
  cudnnTensorDescriptor_t desc = scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                               : CUDNN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxBackward(
      handle,
      algo,
      mode,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
887
      out_data,
888
      desc,
889
      dout_data,
890 891 892 893 894 895
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      dx_data));
#endif
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
template <typename T>
void LaunchSoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
                                      const DenseTensor& out,
                                      const DenseTensor& dout,
                                      const int axis,
                                      const bool log_mode,
                                      DenseTensor* dx) {
  auto* dx_data = dx->data<T>();
  auto* out_data = out.data<T>();
  auto* dout_data = dout.data<T>();
  int rank = out.dims().size();

  std::vector<int> tensor_dims = GetSoftmaxTensorDims(out.dims(), axis);
  int64_t remaining = tensor_dims[0];
  int dim = tensor_dims[1];
  int64_t batch_size = std::numeric_limits<int32_t>::max() / dim;
  int offset = batch_size * dim;
  while (remaining > 0) {
    tensor_dims[0] = std::min<int64_t>(remaining, batch_size);
    SoftmaxBackwardCudnnKernel<T>(dev_ctx,
                                  out_data,
                                  dout_data,
                                  axis,
                                  rank,
                                  log_mode,
                                  tensor_dims,
                                  dx_data);
    out_data += offset;
    dout_data += offset;
    dx_data += offset;
    remaining -= batch_size;
  }
}

930 931
#if CUDNN_VERSION < 8100
template <>
932
inline void LaunchSoftmaxForwardCudnnKernel<phi::dtype::bfloat16>(
933 934 935 936 937 938 939 940 941 942
    const GPUContext& dev_ctx,
    const DenseTensor& x,
    const int axis,
    const bool log_mode,
    DenseTensor* out) {
  PADDLE_THROW(errors::Unavailable(
      "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < "
      "8100."));
}
template <>
943
inline void LaunchSoftmaxBackwardCudnnKernel<phi::dtype::bfloat16>(
944 945 946 947 948 949 950 951 952 953 954 955
    const GPUContext& dev_ctx,
    const DenseTensor& out,
    const DenseTensor& dout,
    const int axis,
    const bool log_mode,
    DenseTensor* dx) {
  PADDLE_THROW(errors::Unavailable(
      "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < "
      "8100."));
}
#endif

956
template <typename T>
957 958 959
bool UseCudnnSoftmax(const GPUContext& ctx,
                     int64_t softmax_dim,
                     bool last_dim) {
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
  bool cudnn_available = ctx.cudnn_handle();
  if (!ctx.cudnn_handle()) {
    if (std::is_same<T, phi::dtype::bfloat16>::value) {
#if CUDNN_VERSION < 8100
      cudnn_available = false;
#endif
    }
  }
  constexpr int max_dim = 512;
  if (!cudnn_available || !last_dim ||
      (softmax_dim <= max_dim && sizeof(T) <= 4)) {
    return false;
  } else {
    return true;
  }
}

977 978 979 980 981
template <typename T, typename IndexType, bool LogMode = false>
void SoftmaxForwardCUDAKernelDriverImpl(const GPUContext& dev_ctx,
                                        const DenseTensor& x,
                                        const int input_axis,
                                        DenseTensor* out) {
982 983
  auto* out_data = out->data<T>();

984 985
  int rank = x.dims().size();
  int axis = phi::funcs::CanonicalAxis(input_axis, rank);
986 987 988 989
  std::vector<IndexType> tensor_dims =
      GetSoftmaxTensorDims<IndexType>(x.dims(), axis);
  IndexType N = tensor_dims[0];
  IndexType dim = tensor_dims[1];
990
  int D = tensor_dims[2];
991

992 993 994
  if (D == 1) {
    if (!UseCudnnSoftmax<T>(dev_ctx, dim, true)) {
      int dim_log2 = static_cast<int>(Log2Ceil(dim));
995
      IndexType dim_ceil = 1 << dim_log2;
996 997 998 999 1000 1001 1002 1003
      int warp_size = (dim_ceil < 32) ? dim_ceil : 32;
      int batches_per_warp = (dim_ceil <= 32) ? 2 : 1;

      // use 128 threads per block to maximimize gpu utilization
      constexpr int threads_per_block = 128;

      int warps_per_block = (threads_per_block / warp_size);
      int batches_per_block = warps_per_block * batches_per_warp;
1004
      IndexType blocks = (N + batches_per_block - 1) / batches_per_block;
1005 1006 1007 1008 1009 1010 1011
      dim3 threads(warp_size, warps_per_block, 1);

      // vectorization read/write
      using T4 = typename VecT4<T>::Type;
      using T2 = typename VecT2<T>::Type;

      if (dim % 4 == 0) {
1012 1013 1014 1015 1016 1017 1018 1019 1020
        SwitchWarpSoftmaxForward<T, T4, IndexType, LogMode>(blocks,
                                                            threads,
                                                            dev_ctx,
                                                            out_data,
                                                            x.data<T>(),
                                                            N,
                                                            dim,
                                                            dim,
                                                            dim_log2);
1021
      } else if (dim % 2 == 0) {
1022 1023 1024 1025 1026 1027 1028 1029 1030
        SwitchWarpSoftmaxForward<T, T2, IndexType, LogMode>(blocks,
                                                            threads,
                                                            dev_ctx,
                                                            out_data,
                                                            x.data<T>(),
                                                            N,
                                                            dim,
                                                            dim,
                                                            dim_log2);
1031
      } else {
1032 1033 1034 1035 1036 1037 1038 1039 1040
        SwitchWarpSoftmaxForward<T, T, IndexType, LogMode>(blocks,
                                                           threads,
                                                           dev_ctx,
                                                           out_data,
                                                           x.data<T>(),
                                                           N,
                                                           dim,
                                                           dim,
                                                           dim_log2);
1041
      }
1042
    } else {
1043
      LaunchSoftmaxForwardCudnnKernel<T>(dev_ctx, x, axis, LogMode, out);
1044
    }
1045
  } else {
1046 1047
    LaunchNormalSoftmaxForward<T, LogMode>(
        dev_ctx, out_data, x.data<T>(), N, dim, D);
1048 1049 1050
  }
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
template <typename T, bool LogMode = false>
void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                    const DenseTensor& x,
                                    const int input_axis,
                                    DenseTensor* out) {
  if (x.numel() >= std::numeric_limits<int32_t>::max()) {
    SoftmaxForwardCUDAKernelDriverImpl<T, int64_t, LogMode>(
        dev_ctx, x, input_axis, out);
  } else {
    SoftmaxForwardCUDAKernelDriverImpl<T, int32_t, LogMode>(
        dev_ctx, x, input_axis, out);
  }
}

1065
template <typename T, bool LogMode = false>
1066 1067 1068 1069 1070
void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                     const DenseTensor& out,
                                     const DenseTensor& dout,
                                     const int input_axis,
                                     DenseTensor* dx) {
1071 1072
  auto* dx_data = dx->data<T>();

1073 1074 1075 1076 1077 1078
  int rank = out.dims().size();
  int axis = phi::funcs::CanonicalAxis(input_axis, rank);
  std::vector<int> tensor_dims = GetSoftmaxTensorDims(out.dims(), axis);
  int N = tensor_dims[0];
  int dim = tensor_dims[1];
  int D = tensor_dims[2];
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  if (D == 1) {
    if (!UseCudnnSoftmax<T>(dev_ctx, dim, true)) {
      int dim_log2 = Log2Ceil(dim);
      int dim_ceil = 1 << dim_log2;
      int warp_size = (dim_ceil < 32) ? dim_ceil : 32;
      int batches_per_warp = (dim_ceil <= 128) ? 2 : 1;

      constexpr int threads_per_block = 128;

      int warps_per_block = (threads_per_block / warp_size);
      int batches_per_block = warps_per_block * batches_per_warp;
      int blocks = (N + batches_per_block - 1) / batches_per_block;
      dim3 threads(warp_size, warps_per_block, 1);

      // vectorization read/write
      using T4 = typename VecT4<T>::Type;
      using T2 = typename VecT2<T>::Type;
      if (dim % 4 == 0) {
        SwitchWarpSoftmaxBackward<T, T4, LogMode>(blocks,
                                                  threads,
                                                  dev_ctx,
                                                  dx_data,
                                                  dout.data<T>(),
                                                  out.data<T>(),
                                                  N,
                                                  dim,
                                                  dim,
                                                  dim_log2);
      } else if (dim % 2 == 0) {
        SwitchWarpSoftmaxBackward<T, T2, LogMode>(blocks,
                                                  threads,
                                                  dev_ctx,
                                                  dx_data,
                                                  dout.data<T>(),
                                                  out.data<T>(),
                                                  N,
                                                  dim,
                                                  dim,
                                                  dim_log2);
      } else {
        SwitchWarpSoftmaxBackward<T, T, LogMode>(blocks,
                                                 threads,
                                                 dev_ctx,
                                                 dx_data,
                                                 dout.data<T>(),
                                                 out.data<T>(),
                                                 N,
                                                 dim,
                                                 dim,
                                                 dim_log2);
      }
1131
    } else {
1132 1133
      LaunchSoftmaxBackwardCudnnKernel<T>(
          dev_ctx, out, dout, axis, LogMode, dx);
1134
    }
1135
  } else {
1136 1137
    LaunchNormalSoftmaxBackward<T, LogMode>(
        dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N, dim, D);
1138 1139 1140
  }
}

1141
}  // namespace phi