Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
34d4b40d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
34d4b40d
编写于
3月 11, 2022
作者:
Y
Yiqun Liu
提交者:
GitHub
3月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify the softmax kernel and add the check of whether cudnn softmax can be used. (#40424)
上级
f452ad5c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
165 addition
and
179 deletion
+165
-179
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
+165
-179
未找到文件。
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
浏览文件 @
34d4b40d
...
...
@@ -79,7 +79,7 @@ class VecT2<phi::dtype::bfloat16> {
using
Type
=
int
;
};
static
inline
int
log2_c
eil
(
int
value
)
{
static
inline
int
Log2C
eil
(
int
value
)
{
int
log2_value
=
0
;
while
((
1
<<
log2_value
)
<
value
)
++
log2_value
;
return
log2_value
;
...
...
@@ -577,8 +577,8 @@ static void GetBlockDim(int mid_dim, int low_dim, dim3* block) {
#else
constexpr
int
max_num_threads
=
1024
;
#endif
int
block_x
=
1
<<
log2_c
eil
(
low_dim
);
int
block_y
=
1
<<
log2_c
eil
(
mid_dim
);
int
block_x
=
1
<<
Log2C
eil
(
low_dim
);
int
block_y
=
1
<<
Log2C
eil
(
mid_dim
);
block
->
x
=
std
::
min
(
block_x
,
32
);
block
->
y
=
std
::
min
(
block_y
,
static_cast
<
int
>
(
max_num_threads
/
block
->
x
));
block
->
x
=
std
::
min
(
block_x
,
static_cast
<
int
>
(
max_num_threads
/
block
->
y
));
...
...
@@ -739,6 +739,131 @@ void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx,
}
}
static
std
::
vector
<
int
>
GetSoftmaxTensorDims
(
const
phi
::
DDim
&
dims
,
const
int
axis
)
{
int
dim
=
dims
[
axis
];
int
N
=
phi
::
funcs
::
SizeToAxis
(
axis
,
dims
);
int
D
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
dims
);
return
{
N
,
dim
,
D
,
1
};
}
template
<
typename
T
>
void
SoftmaxForwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
int
axis
,
const
bool
log_mode
,
DenseTensor
*
out
)
{
auto
*
out_data
=
out
->
data
<
T
>
();
const
int
rank
=
x
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
x
.
dims
(),
axis
);
auto
handle
=
dev_ctx
.
cudnn_handle
();
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
ScopedTensorDescriptor
scoped_desc
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc
=
scoped_desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
auto
algo
=
log_mode
?
MIOPEN_SOFTMAX_LOG
:
MIOPEN_SOFTMAX_ACCURATE
;
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxForward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
out_data
,
algo
,
mode
));
#else
cudnnTensorDescriptor_t
desc
=
scoped_desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
auto
algo
=
log_mode
?
CUDNN_SOFTMAX_LOG
:
CUDNN_SOFTMAX_ACCURATE
;
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxForward
(
handle
,
algo
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
out_data
));
#endif
}
template
<
typename
T
>
void
SoftmaxBackwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
out
,
const
DenseTensor
&
dout
,
const
int
axis
,
const
bool
log_mode
,
DenseTensor
*
dx
)
{
auto
*
dx_data
=
dx
->
data
<
T
>
();
int
rank
=
out
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
out
.
dims
(),
axis
);
auto
handle
=
dev_ctx
.
cudnn_handle
();
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
ScopedTensorDescriptor
scoped_desc
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc
=
scoped_desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
auto
algo
=
log_mode
?
MIOPEN_SOFTMAX_LOG
:
MIOPEN_SOFTMAX_ACCURATE
;
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxBackward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
out
.
data
<
T
>
(),
desc
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
dx_data
,
algo
,
mode
));
#else
cudnnTensorDescriptor_t
desc
=
scoped_desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
auto
algo
=
log_mode
?
CUDNN_SOFTMAX_LOG
:
CUDNN_SOFTMAX_ACCURATE
;
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxBackward
(
handle
,
algo
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
out
.
data
<
T
>
(),
desc
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
dx_data
));
#endif
}
template
<
typename
T
>
static
bool
CanUseCudnnSoftmax
(
const
GPUContext
&
dev_ctx
)
{
if
(
dev_ctx
.
cudnn_handle
()
!=
nullptr
)
{
if
(
std
::
is_same
<
T
,
phi
::
dtype
::
bfloat16
>::
value
)
{
#if CUDNN_VERSION < 8100
return
false
;
#endif
}
return
true
;
}
return
false
;
}
template
<
typename
T
,
bool
LogMode
=
false
>
void
SoftmaxForwardCUDAKernelDriver
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
...
...
@@ -746,29 +871,29 @@ void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
DenseTensor
*
out
)
{
auto
*
out_data
=
out
->
data
<
T
>
();
auto
dims
=
x
.
dims
();
const
int
rank
=
dims
.
size
(
);
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
input_axis
,
rank
);
const
int
dim
=
dims
[
axis
];
const
int
N
=
phi
::
funcs
::
SizeToAxis
(
axis
,
dims
)
;
const
int
D
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
dims
)
;
int
rank
=
x
.
dims
().
size
();
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
input_axis
,
rank
);
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
x
.
dims
(),
axis
);
int
N
=
tensor_dims
[
0
];
int
dim
=
tensor_dims
[
1
]
;
int
D
=
tensor_dims
[
2
]
;
constexpr
int
max_dim
=
512
;
constexpr
int
warps_per_block
=
4
;
if
(
D
==
1
&&
dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
)
{
const
int
kDimLog2
=
static_cast
<
int
>
(
log2_ceil
(
dim
));
const
int
kDimCeil
=
1
<<
kDimLog2
;
int
kWarpSize
=
(
kDimCeil
<
32
)
?
kDimCeil
:
32
;
int
batches_per_warp
=
(
kDimCeil
<=
32
)
?
2
:
1
;
if
(
D
==
1
&&
(
!
CanUseCudnnSoftmax
<
T
>
(
dev_ctx
)
||
(
dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
)))
{
int
dim_log2
=
static_cast
<
int
>
(
Log2Ceil
(
dim
));
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
32
)
?
2
:
1
;
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
kWarpS
ize
);
int
warps_per_block
=
(
threads_per_block
/
warp_s
ize
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
kWarpS
ize
,
warps_per_block
,
1
);
dim3
threads
(
warp_s
ize
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
...
...
@@ -783,7 +908,7 @@ void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxForward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
...
...
@@ -793,7 +918,7 @@ void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
else
{
SwitchWarpSoftmaxForward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
...
...
@@ -803,78 +928,13 @@ void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
}
else
if
(
D
>
1
)
{
LaunchNormalSoftmaxForward
<
T
,
LogMode
>
(
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
D
);
}
else
{
ScopedTensorDescriptor
desc
;
std
::
vector
<
int
>
tensor_dims
=
{
N
,
dim
,
D
,
1
};
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#else
cudnnTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#endif
auto
handle
=
dev_ctx
.
cudnn_handle
();
#ifdef PADDLE_WITH_HIP
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
if
(
LogMode
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxForward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
,
MIOPEN_SOFTMAX_LOG
,
mode
));
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxForward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
,
MIOPEN_SOFTMAX_ACCURATE
,
mode
));
}
#else
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
if
(
LogMode
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxForward
(
handle
,
CUDNN_SOFTMAX_LOG
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
));
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxForward
(
handle
,
CUDNN_SOFTMAX_ACCURATE
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
x
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
out_data
));
}
#endif
SoftmaxForwardCudnnKernel
<
T
>
(
dev_ctx
,
x
,
axis
,
LogMode
,
out
);
}
}
...
...
@@ -886,27 +946,28 @@ void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
DenseTensor
*
dx
)
{
auto
*
dx_data
=
dx
->
data
<
T
>
();
auto
dims
=
out
.
dims
();
const
int
rank
=
dims
.
size
(
);
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
input_axis
,
rank
);
const
int
dim
=
dims
[
axis
];
const
int
N
=
phi
::
funcs
::
SizeToAxis
(
axis
,
dims
)
;
const
int
D
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
dims
)
;
int
rank
=
out
.
dims
().
size
();
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
input_axis
,
rank
);
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
out
.
dims
(),
axis
);
int
N
=
tensor_dims
[
0
];
int
dim
=
tensor_dims
[
1
]
;
int
D
=
tensor_dims
[
2
]
;
constexpr
int
max_dim
=
512
;
constexpr
int
warps_per_block
=
4
;
if
(
D
==
1
&&
dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
)
{
const
int
kDimLog2
=
log2_ceil
(
dim
);
const
int
kDimCeil
=
1
<<
kDimLog2
;
int
kWarpSize
=
(
kDimCeil
<
32
)
?
kDimCeil
:
32
;
int
batches_per_warp
=
(
kDimCeil
<=
128
)
?
2
:
1
;
if
(
D
==
1
&&
(
!
CanUseCudnnSoftmax
<
T
>
(
dev_ctx
)
||
(
dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
)))
{
int
dim_log2
=
Log2Ceil
(
dim
);
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
128
)
?
2
:
1
;
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
kWarpS
ize
);
int
warps_per_block
=
(
threads_per_block
/
warp_s
ize
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
kWarpS
ize
,
warps_per_block
,
1
);
dim3
threads
(
warp_s
ize
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
...
...
@@ -921,7 +982,7 @@ void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxBackward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
...
...
@@ -932,7 +993,7 @@ void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
else
{
SwitchWarpSoftmaxBackward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
...
...
@@ -943,88 +1004,13 @@ void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
N
,
dim
,
dim
,
kDimL
og2
);
dim_l
og2
);
}
}
else
if
(
D
>
1
)
{
LaunchNormalSoftmaxBackward
<
T
,
LogMode
>
(
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
D
);
}
else
{
ScopedTensorDescriptor
desc
;
std
::
vector
<
int
>
tensor_dims
=
{
N
,
dim
,
D
,
1
};
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
#ifdef PADDLE_WITH_HIP
miopenTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#else
cudnnTensorDescriptor_t
desc_
=
desc
.
descriptor
<
T
>
(
layout
,
tensor_dims
);
#endif
auto
handle
=
dev_ctx
.
cudnn_handle
();
#ifdef PADDLE_WITH_HIP
auto
mode
=
axis
==
rank
-
1
?
MIOPEN_SOFTMAX_MODE_INSTANCE
:
MIOPEN_SOFTMAX_MODE_CHANNEL
;
if
(
LogMode
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxBackward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
.
data
<
T
>
(),
desc_
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
,
MIOPEN_SOFTMAX_LOG
,
mode
));
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
miopenSoftmaxBackward_V2
(
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
.
data
<
T
>
(),
desc_
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
,
MIOPEN_SOFTMAX_ACCURATE
,
mode
));
}
#else
auto
mode
=
axis
==
rank
-
1
?
CUDNN_SOFTMAX_MODE_INSTANCE
:
CUDNN_SOFTMAX_MODE_CHANNEL
;
if
(
LogMode
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxBackward
(
handle
,
CUDNN_SOFTMAX_LOG
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
.
data
<
T
>
(),
desc_
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
));
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
paddle
::
platform
::
dynload
::
cudnnSoftmaxBackward
(
handle
,
CUDNN_SOFTMAX_ACCURATE
,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc_
,
out
.
data
<
T
>
(),
desc_
,
dout
.
data
<
T
>
(),
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc_
,
dx_data
));
}
#endif
SoftmaxBackwardCudnnKernel
<
T
>
(
dev_ctx
,
out
,
dout
,
axis
,
LogMode
,
dx
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录